Skip to main content
Log in

Controlling Robotic Contact Force on Curved and Complex Surfaces Based on an Online Identification Admittance Controller

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a new method for controlling robotic contact force based on an online environment stiffness admittance controller on curved and complex surfaces. A second-order system models the robot’s interaction with the environment, while a position-based admittance controller adjusts the reference force. A proposed method obtains the desired force by estimating the online environment stiffness based on the robot’s stiffness and combining the damped force. An exponential stability theorem was utilized to check the stability of this controller. The simulations were conducted to determine the efficiency of this method using different robot stiffnesses. Accurate positions were found at robot stiffnesses of (0.6) and (0.8) N/m and environment stiffnesses of (8500) and (9000) N/m for both surfaces at a force of 50 N. Moreover, polishing experiments were applied on the surfaces based on the simulation results. The contact force fluctuations did not exceed \( \pm 1.25 \) and \( \pm 1.3 \) N out of 10 N for both cases. Furthermore, roughness values were reduced from ranges of 40 to − 20 and 20 to − 20 \(\upmu \)m to ranges of 3.5 to − 3 and 5 to − 5.75 \(\upmu \)m for a vertical and horizontal line of the curved surface, respectively. Similarly, roughness values decreased from ranges of 180 to − 60 and 0 to − 66 \(\upmu \)m to ranges of 2.5 to − 3 and 3.75 to − 2.3 \(\upmu \)m for the vertical and horizontal lines for the complex surface, respectively. The approach was able to track desired force on these surfaces, which is quite challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

References

  1. Realyvásquez-Vargas, A.; Arredondo-Soto, K.C.; García-Alcaraz, J.L.; Márquez-Lobato, B.Y.; Cruz-García, J.: Introduction and configuration of a collaborative robot in an assembly task as a means to decrease occupational risks and increase efficiency in a manufacturing company. Robot. Comput. Integr. Manuf. 57, 315–328 (2019). https://doi.org/10.1016/j.rcim.2018.12.015

    Article  Google Scholar 

  2. Liu, H.; Wang, L.: Remote human–robot collaboration: a cyber-physical system application for hazard manufacturing environment. J. Manuf. Syst. 54, 24–34 (2020). https://doi.org/10.1016/j.jmsy.2019.11.001

    Article  Google Scholar 

  3. Middleton, R.H.; Goodwin, G.C.; Longman, R.W.: A method for improving the dynamic accuracy of a robot performing a repetitive task. Int. J. Robot. Res. 8(5), 67–74 (1989). https://doi.org/10.1177/027836498900800506

    Article  Google Scholar 

  4. Qiao, H.; Wang, M.; Su, J.; Jia, S.; Li, R.: The concept of attractive region in environment and its application in high-precision tasks with low-precision systems. IEEE/ASME Trans. Mechatron. 20(5), 2311–2327 (2014). https://doi.org/10.1109/TMECH.2014.2375638

    Article  Google Scholar 

  5. Guan, W.; Chen, S.; Wen, S.; Tan, Z.; Song, H.; Hou, W.: High-accuracy robot indoor localization scheme based on robot operating system using visible light positioning. IEEE Photon. J. 12(2), 1–16 (2020). https://doi.org/10.1109/JPHOT.2020.2981485

    Article  Google Scholar 

  6. Heyer, C.: Human–robot interaction and future industrial robotics applications. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4749–4754. IEEE (2010). https://doi.org/10.1016/j.jmsy.2019.11.001

  7. Ochoa, H.; Cortesão, R.: Impedance control architecture for robotic-assisted micro-drilling tasks. J. Manuf. Process. 67, 356–363 (2021). https://doi.org/10.1016/j.jmapro.2021.04.066

    Article  Google Scholar 

  8. Xu, Z.; Li, S.; Zhou, X.; Cheng, T.: Dynamic neural networks based adaptive admittance control for redundant manipulators with model uncertainties. Neurocomputing 357, 271–281 (2019). https://doi.org/10.1016/j.neucom.2019.04.069

    Article  Google Scholar 

  9. Han, B.; Zoppi, M.; Molfino, R.: Variable impedance actuation using biphasic media. Mech. Mach. Theory 62, 1–12 (2013). https://doi.org/10.1016/2012.11.001

    Article  Google Scholar 

  10. Mohsin, I.; He, K.; Li, Z.; Du, R.: Path planning under force control in robotic polishing of the complex curved surfaces. Appl. Sci. 9(24), 5489 (2019). https://doi.org/10.3390/app9245489

    Article  Google Scholar 

  11. Duan, J.; Gan, Y.; Chen, M.; Dai, X.: Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robot. Auton. Syst. 102, 54–65 (2018). https://doi.org/10.1016/j.robot.2018.01.009

    Article  Google Scholar 

  12. Hamedani, M.H.; Sadeghian, H.; Zekri, M.; Sheikholeslam, F.; Keshmiri, M.: Intelligent Impedance Control using Wavelet Neural Network for dynamic contact force tracking in unknown varying environments. Control. Eng. Pract. 113, 104840 (2021). https://doi.org/10.1016/j.robot.2018.01.009

    Article  Google Scholar 

  13. Basu, B.; Nagarajaiah, S.; Chakraborty, A.: Online identification of linear time-varying stiffness of structural systems by wavelet analysis. Struct. Health Monit. 7(1), 21–36 (2008). https://doi.org/10.1177/1475921707081968

    Article  Google Scholar 

  14. Jinjun, D.; Yahui, G.; Ming, C.; Xianzhong, D.: Symmetrical adaptive variable admittance control for position/force tracking of dual-arm cooperative manipulators with unknown trajectory deviations. Robot. Comput. Integr. Manuf. 57, 357–369 (2019). https://doi.org/10.1016/j.rcim.2018.12.012

    Article  Google Scholar 

  15. Wahballa, H.; Duan, J.; Wang, W.; Dai, Z.: Experimental study of robotic polishing process for complex violin surface. Machines 11(2), 147 (2023). https://doi.org/10.3390/machines11020147

    Article  Google Scholar 

  16. Li, Z.; Huang, H.; Song, X.; Xu, W.; Li, B.: A fuzzy adaptive admittance controller for force tracking in an uncertain contact environment. IET Control Theory Appl. 15(17), 2158–2170 (2021). https://doi.org/10.1049/cth2.12175

    Article  Google Scholar 

  17. Jung, S.; Jeong, D.J.: Admittance force tracking control schemes for robot manipulators under uncertain environment and dynamics. Int. J. Control Autom. Syst. 19(11), 3753–3763 (2021). https://doi.org/10.1007/s12555-020-0959-7

    Article  Google Scholar 

  18. Roveda, L.; Piga, D.: Sensorless environment stiffness and interaction force estimation for impedance control tuning in robotized interaction tasks. Auton. Robot. 45(3), 371–388 (2021). https://doi.org/10.1007/s10514-021-09970-z

    Article  Google Scholar 

  19. Jung, S.: Admittance force tracking control for position-controlled robot manipulators under unknown environment. In: 2020 20th International Conference on Control, Automation and Systems (ICCAS), pp. 219–224. IEEE (2020). https://doi.org/10.23919/ICCAS50221.2020.9268417

  20. Mao, D.; Yang, W.; Du, Z.: Fuzzy variable impedance control based on stiffness identification for human-robot cooperation. In: IOP Conference Series: Earth and Environmental Science, Vol. 69, No. 1, p. 012090. IOP Publishing (2017). https://doi.org/10.1088/1755-1315/69/1/012

  21. Liu, C.; He, Y.; Chen, X.; Cao, H.: Adaptive enhanced admittance force-tracking controller design for highly dynamic interactive tasks. In: Industrial Robot: The International Journal of Robotics Research and Application (2022). https://doi.org/10.1108/IR-10-2021-0222

  22. Cieślak, P.; Ridao, P.: . Adaptive admittance control in task-priority framework for contact force control in autonomous underwater floating manipulation. In: International Conference on Intelligent Robots and Systems (IROS), pp. 6646–6651 (2018). https://doi.org/10.1109/IROS.2018.8593542

  23. Li, H.Y.; Paranawithana, I.; Yang, L.; Lim, T.S.K.; Foong, S.; Ng, F.C.; Tan, U.X.: Stable and compliant motion of physical human-robot interaction coupled with a moving environment using variable admittance and adaptive control. IEEE Robot. Autom. Lett. 3(3), 2493–2500 (2018). https://doi.org/10.1109/LRA.2018.2812916

    Article  Google Scholar 

  24. Ramírez-Vera; V. I.; Mendoza-Gutiérrez; M. O.; Bonilla-Gutiérrez, I.: Impedance control with bounded actions for human–robot interaction. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-06638-3

  25. Dimeas, F.; Aspragathos, N.: Fuzzy learning variable admittance control for human–robot cooperation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4770–4775. IEEE (2014). https://doi.org/10.1109/IROS.2014.6943240

  26. Tufail, M.; Anwar, S.; Khan, Z.A.; Khan, M.T.: Real-time impedance control based on learned inverse dynamics. Arab. J. Sci. Eng. 45(7), 5043–5055 (2020). https://doi.org/10.1007/s13369-019-04334-3

    Article  Google Scholar 

  27. Calanca, A.; Muradore, R.; Fiorini, P.: Impedance control of series elastic actuators: passivity and acceleration-based control. Mechatronics 47, 37–48 (2017). https://doi.org/10.1016/j.mechatronics.2017.08.010

    Article  Google Scholar 

  28. Song, P.; Yu, Y.; Zhang, X.: A tutorial survey and comparison of impedance control on robotic manipulation. Robotica 37(5), 801–836 (2019). https://doi.org/10.1017/S0263574718001339

    Article  Google Scholar 

  29. La Mura, F.; Todeschini, G.; Giberti, H.: High performance motion-planner architecture for hardware-in-the-loop system based on position-based-admittance-control. Robotics 7(1), 8 (2018). https://doi.org/10.3390/robotics7010008

    Article  Google Scholar 

  30. Ahmed, A.; Yu, M.; Chen, F.: Inverse kinematic solution of 6-DOF robot-arm based on dual quaternions and axis invariant methods. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-06794-6

  31. Afzal, A.; Ansari, Z.; Faizabadi, A.R.; Ramis, M.K.: Parallelization strategies for computational fluid dynamics software: state of the art review. Arch. Comput. Methods Eng. 24(2), 337–363 (2017). https://doi.org/10.1007/s11831-016-9165-4

    Article  MathSciNet  Google Scholar 

  32. Afzal, A.; Ansari, Z.; Ramis, M.K.: Parallelization of numerical conjugate heat transfer analysis in parallel plate channel using OpenMP. Arab. J. Sci. Eng. 45(11), 8981–8997 (2020). https://doi.org/10.1007/s13369-020-04640-1

    Article  Google Scholar 

  33. Zhou, H.; Ma, S.; Wang, G.; Deng, Y.; Liu, Z.: A hybrid control strategy for grinding and polishing robot based on adaptive impedance control. Adv. Mech. Eng. (2021) https://doi.org/10.1177/16878140211004034

  34. Shen, Y.; Lu, Y.; Zhuang, C.: A fuzzy-based impedance control for force tracking in unknown environment. J. Mech. Sci. Technol. 36(6), 5231–5242 (2022). https://doi.org/10.1007/s12206-022-0936-6

    Article  Google Scholar 

  35. Saleh, B.; Sundar, S.; Aly, A.A.; Ramana, E.V.; Sharma, K.V.; Afzal, A.; Abdelrhman, Y.; Sousa, A.C.M.: A fuzzy-based impedance control for force tracking in unknown environment. J. Mech. Sci. Technol. 36(6), 5231–5242 (2022). https://doi.org/10.1007/s12206-022-0936-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank a teamwork of Bionic Engineering at the School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics.

Funding

This work was supported by the National Natural Science Foundation of China under project No. (62233008) and No. (52205017).

Author information

Authors and Affiliations

Authors

Contributions

The below lists are the authors’ contributions to this paper: conceptualizing and modeling, H.W.; simulations and experiments, H.W. and J.D.; analysis and evaluation, H.W.; writing and preparation, Z.D.; revising manuscript, supervision, Z.D. All authors have read and agreed to publish this manuscript.

Corresponding author

Correspondence to Jinjun Duan.

Ethics declarations

Conflict of interest

The authors declared there are no any potential conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahballa, H., Duan, J. & Dai, Z. Controlling Robotic Contact Force on Curved and Complex Surfaces Based on an Online Identification Admittance Controller. Arab J Sci Eng 49, 1625–1641 (2024). https://doi.org/10.1007/s13369-023-07826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07826-5

Keywords

Navigation