Skip to main content
Log in

Impact of Combined Effects of Injection Pressure and EGR on Modified Stationary Engine Fuelled with Biodiesel Blend Made of Waste Feedstock Oils

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of this present work was to investigate the combined effects of injection pressure and exhaust gas recirculation (EGR) on the combustion, performance and emission characteristics in a modified stationary diesel engine. Biodiesel blend (BDB) method also has been approached in this present work to improve the fuel properties by mixing two feedstock of different saturated fatty acid composition. Biodiesel blend was prepared from waste feedstock oils of waste cooking oil and chicken fat oil. A new method of raw bio-oil mixing has been carried out for BDB production and reduced the production cost. The engine was tested with three injection pressures (300, 400 and 500 bar) and two different EGR rates (10% and 20%) at full load, and experimental results were compared with biodiesel conventional combustion (BDC) mode. The outcomes showed that the amount of oxygen presents in biodiesel blend is not enough to support the combustion at high EGR rate of 20%. High injection pressure of 500 bar with the minimum amount of 10% EGR operating condition, named as P500E10, offered the high brake thermal efficiency of 34.93%, which is 11.56% higher than BDC. Nitric oxide emissions, the major constrain for biodiesel usage in engine applications, also reduced at P500E10 by 2.56% as compared to BDC. The overall experimental results showed that the BDB prepared with waste feedstocks would be an impressive alternative resource for engine applications along with suitable injection pressure and EGR rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

BDB:

Biodiesel blend

BDC:

Biodiesel conventional combustion

BSFC:

Brake-specific fuel consumption

BTE:

Brake thermal efficiency

CFO:

Chicken fat oil

CFB:

Chicken fat oil biodiesel

CD:

Combustion duration

CN:

Cetane number

EGR:

Exhaust gas recirculation

ID:

Ignition delay

RBOB:

Raw bio-oil blend

SFA:

Saturated fatty acid

USFA:

Unsaturated fatty acid

WCO:

Waste cooking oil

WCOB:

Waste cooking oil biodiesel

References

  1. Hajjari, M.; Tabatabaei, M.; Aghbashlo, M.; Ghanavati, H.: A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renew. Sustain. Energy Rev. 72, 445–464 (2017). https://doi.org/10.1016/j.rser.2017.01.034

    Article  Google Scholar 

  2. Wang, Y.-T.; Cong, W.-J.; Zeng, Y.-N.; Zhang, Y.-Q.; Liang, J.-L.; Li, J.-G.; Jiang, L.-Q.; Fang, Z.: Direct production of biodiesel via simultaneous esterification and transesterification of renewable oils using calcined blast furnace dust. Renew. Energy 175, 1001–1011 (2021). https://doi.org/10.1016/j.renene.2021.05.013

    Article  Google Scholar 

  3. Ghazali, W.N.M.W.; Mamat, R.; Masjuki, H.H.; Najafi, G.: Effects of biodiesel from different feedstocks on engine performance and emissions: a review. Renew. Sustain. Energy Rev. 51, 585–602 (2015). https://doi.org/10.1016/j.rser.2015.06.031

    Article  Google Scholar 

  4. Athar, M.; Imdad, S.; Zaidi, S.; Yusuf, M.; Kamyab, H.; Klemeš, J.J.; Chelliapan, S.: Biodiesel production by single-step acid-catalysed transesterification of Jatropha oil under microwave heating with modelling and optimisation using response surface methodology. Fuel 322, 124205 (2022). https://doi.org/10.1016/j.fuel.2022.124205

    Article  Google Scholar 

  5. Patel, C.; Chandra, K.; Hwang, J.; Agarwal, R.A.; Gupta, N.; Bae, C.; Gupta, T.; Agarwal, A.K.: Comparative compression ignition engine performance, combustion, and emission characteristics, and trace metals in particulates from Waste cooking oil, Jatropha and Karanja oil derived biodiesels. Fuel 236, 1366–1376 (2019). https://doi.org/10.1016/j.fuel.2018.08.137

    Article  Google Scholar 

  6. Thomas, J.J.; Sabu, V.R.; Nagarajan, G.; Kumar, S.; Basrin, G.: Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions. Energy 206, 118199 (2020). https://doi.org/10.1016/j.energy.2020.118199

    Article  Google Scholar 

  7. Atabani, A.E.; Silitonga, A.S.; Ong, H.C.; Mahila, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Fayaz, H.: Non-edible vegetable oil: a critical evaluation of oil extraction, Fatty acid composition, biodiesel production, characteristics, engine performance, and emissions production. Renew. Sustain. Energy Rev. 18, 211–245 (2013). https://doi.org/10.1016/j.rser.2012.10.013

    Article  Google Scholar 

  8. Sharma, V.; Duraisamy, G.: Production and characterization of bio-mix fuel produced from a ternary and quaternary mixture of raw oil feedstock. J Clean Prod 221, 271–285 (2019). https://doi.org/10.1016/j.jclepro.2019.02.214

    Article  Google Scholar 

  9. Lawrence, K.R.; Huang, Z.; Nguyen, X.P.; Balasubramanian, D., et al.: Exploration over combined impacts of modified piston bowl geometry and tert-butyl hydroquinone additive-included biodiesel/diesel blend on diesel engine behaviors. Fuel 322, 124206 (2022). https://doi.org/10.1016/j.fuel.2022.124206

    Article  Google Scholar 

  10. Munuswamy, D. B.; Subbiah, G.; Devarajan, Y.; Mishra R, Thangaraja J.: Experimental research on waste and inedible feedstock as a partial alternate fuel: environmental protection and energy-saving initiative. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02799-1

  11. Knothe, G.; Sharp, C.A.; Ryan, T.W.: Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuels 20(1), 403–408 (2006). https://doi.org/10.1021/ef0502711

    Article  Google Scholar 

  12. Ban-Weiss, G.A.; Chen, J.Y.; Buchholz, B.A.; Dibble, R.W.: A numerical investigation into the anomalous slight NOx increase when burning biodiesel: a new (old) theory. Fuel Process. Technol. 88, 659–667 (2007). https://doi.org/10.1016/j.fuproc.2007.01.007

    Article  Google Scholar 

  13. Klopfenstein, W.E.: Effect of molecular weights of fatty acid esters on cetane numbers as diesel fuels. J. Am. Oil Chem. Soc. 62, 1029–1031 (1985). https://doi.org/10.1007/BF02935708

    Article  Google Scholar 

  14. McCormick, R.L.; Graboski, M.S.; Alleman, T.L.; Herring, A.M.; Tyson, K.S.: Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ. Sci. Technol. 35(9), 1742–1747 (2001). https://doi.org/10.1021/es001636t

    Article  Google Scholar 

  15. Atabani, A.E.; Mahlia, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Yussof, H.W.; Chong, W.T.; Lee, K.T.: A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and non-edible oils and study on the effect of biodiesel blending. Energy 58, 296–304 (2013). https://doi.org/10.1016/j.energy.2013.05.040

    Article  Google Scholar 

  16. Fadhil, A.B.; Al-Tikrity, E.T.; Albadree, M.A.: Biodiesel production from mixed non-edible oils castor seed oil and waste fish oil. Fuel 210, 721–728 (2017). https://doi.org/10.1016/j.fuel.2017.09.009

    Article  Google Scholar 

  17. Sharma, V.; Duraisamy, G.; Arumugum, K.: Impact of bio-mix fuel on performance, emission and combustion characteristics in a single cylinder DICI VCR engine. Renew. Energy 146, 111–124 (2020). https://doi.org/10.1016/j.renene.2019.06.142

    Article  Google Scholar 

  18. Muralidharan, K.; Vasudevan, D.: Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends. Appl. Energy 88, 3959–3968 (2011). https://doi.org/10.1016/j.apenergy.2011.04.014

    Article  Google Scholar 

  19. Baghban, A.; Kardani, M.N.; Mohammadi, A.H.: Improved estimation of Cetane number of fatty acid methyl esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models. Fuel 232, 620–631 (2018). https://doi.org/10.1016/j.fuel.2018.05.166

    Article  Google Scholar 

  20. Alviso, D.; Artana, G.; Duriez, T.: Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming. Fuel 264, 116844 (2020). https://doi.org/10.1016/j.fuel.2019.116844

    Article  Google Scholar 

  21. Ranjitha, J.; Gokul Raghavendra, S.; Vijayalakshmi, S., et al.: Production, optimisation and engine characteristics of beef tallow biodiesel rendered from leather fleshing and slaughterhouse wastes. Biomass Conv. Bioref. 10, 675–688 (2020). https://doi.org/10.1007/s13399-019-00501-6

    Article  Google Scholar 

  22. Deng, J.; Li, C.; Hu, Z.; Wu, Z. et al.: Spray characteristics of biodiesel and diesel fuels under high injection pressure with a common rail system, SAE Technical Paper 2010-01-2268 (2010). https://doi.org/10.4271/2010-01-2268

  23. Jain, A.; Singh, A.P.; Agarwal, A.K.: Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine. Energy 122, 249–264 (2017). https://doi.org/10.1016/j.energy.2017.01.050

    Article  Google Scholar 

  24. Mao, B.; Liu, H.; Zheng, Z.; Yao, M.: Influence of fuel properties on multi-cylinder PPC operation over a wide range of EGR and operating conditions. Fuel 215, 352–362 (2018). https://doi.org/10.1016/j.fuel.2017.08.099

    Article  Google Scholar 

  25. Agarwal, D.; Singh, S.K.; Agarwal, A.K.: Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine. Appl. Energy 88, 2900–2907 (2011). https://doi.org/10.1016/j.apenergy.2011.01.066

    Article  Google Scholar 

  26. Abd-Alla, G.H.: Using exhaust gas recirculation in internal combustion engines: a review. Energy Convers. Manage. 43, 1027–1042 (2002). https://doi.org/10.1016/S0196-8904(01)00091-7

    Article  Google Scholar 

  27. Palash, S.M.; Kalam, M.A.; Masjuki, H.H.; Masum, B.M.; Rizwanul Fattah, I.M.; Mofijur, M.: Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew. Sustain. Energy Rev. 23, 473–490 (2013). https://doi.org/10.1016/j.rser.2013.03.003

    Article  Google Scholar 

  28. Saravanan, C.G.; Raj Kiran, K.; Vikneswaran, M.; Rajakrishnamoorthy, P.; Prasanna Raj Yadav, S.: Impact of fuel injection pressure on the engine characteristics of CRDI engine powered by pine oil biodiesel blend. Fuel 264, 116760 (2020). https://doi.org/10.1016/j.fuel.2019.116760

    Article  Google Scholar 

  29. Karthic, S.V.; Senthil Kumar, M.; Nataraj, G.; Vinoth Kumar, S.; Pradeep, P.; Pradeep, R.: An assessment on injection pressure and timing to reduce emissions on diesel engine powered by novel biodiesel. J. Clean. Prod. 255, 120186 (2020). https://doi.org/10.1016/j.jclepro.2020.120186

    Article  Google Scholar 

  30. Shi, Z.; Lee, C.-F.; Wu, H.; Li, H.; Wu, Y.; Zhang, L.; Bo, Y.; Liu, F.: Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions. Appl. Energy 262, 114552 (2020). https://doi.org/10.1016/j.apenergy.2020.114552

    Article  Google Scholar 

  31. Pavan, P.; Bhaskar, K.; Sekar, S.: Effect of split injection and injection pressure on CRDI engine fuelled with POME-diesel blend. Fuel 292, 120242 (2021). https://doi.org/10.1016/j.fuel.2021.120242

    Article  Google Scholar 

  32. Mahla, S.K.; Dhir, A.; Gill, K.J.S.; Cho, H.M.; Lim, H.C.; Chauhan, B.S.: Influence of EGR on the simultaneous reduction of NOx-Smoke opacity trade-off under CNG-biodiesel dual fuel engine. Energy 152, 303–312 (2018). https://doi.org/10.1016/j.energy.2018.03.072

    Article  Google Scholar 

  33. Bhowmick, P.; Jeevanantham, A.K.; Ashok, B.; Nanthagopal, K.; Arumuga Perumal, D.; Karthickeyan, V.; Vora, K.C.; Jain, A.: Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine. Energy 181, 1094–1113 (2019). https://doi.org/10.1016/j.energy.2019.06.014

    Article  Google Scholar 

  34. Liang, J.; Zhang, Q.; Chen, Z.; Zheng, Z.: The effects of EGR rates and ternary blends of biodiesel/n-pentanol/diesel on the combustion and emission characteristics of a CRDI diesel engine. Fuel 286, 119297 (2021). https://doi.org/10.1016/j.fuel.2020.119297

    Article  Google Scholar 

  35. Samanta, S.; Sahoo, R.R.: Waste cooking (palm) oil as an economical source of biodiesel production for alternative green fuel and efficient lubricant. Bioenergy Res. 14, 163–174 (2021). https://doi.org/10.1007/s12155-020-10162-3

    Article  Google Scholar 

  36. Akram, S.; Mumtaz, M.W.; Danish, M.; Mukhtar, H.; Irfan, A.; Raza, S.A.; Wang, Z.; Arshad, M.: Impact of cerium oxide and cerium composite oxide as nano additives on the gaseous exhaust emission profile of waste cooking oil based biodiesel at full engine load conditions. Renew. Energy. 143, 898–905 (2019). https://doi.org/10.1016/j.renene.2019.05.025

    Article  Google Scholar 

  37. Kataria, J.; Mohapatra, S.K.; Kundu, K.: Biodiesel production from waste cooking oil using heterogeneous catalysts and its operational characteristics on variable compression ratio CI engine. J Energy Inst 92, 275–287 (2019). https://doi.org/10.1016/j.joei.2018.01.008

    Article  Google Scholar 

  38. Odetoye, T.E.; Agu, J.O.; Ajala, E.O.: Biodiesel production from poultry wastes: Waste chicken fat and eggshell. J. Environ. Chem. Eng. 9, 105654 (2021). https://doi.org/10.1016/j.jece.2021.105654

    Article  Google Scholar 

  39. Kirubakaran, M.; Arul Mozhi Selvan, V.: A comprehensive review of low cost biodiesel production from waste chicken fat. Renew. Sustain. Energy Rev. 82(Part 1), 390–401 (2018). https://doi.org/10.1016/j.rser.2017.09.039

    Article  Google Scholar 

  40. Lin, C.-W.; Tsai, S.-W.: Production of biodiesel from chicken wastes by various alcohol-catalyst combinations. J. Energy Southern Africa 26, 36–45 (2015). https://doi.org/10.17159/2413-3051/2015/v26i1a2219

    Article  Google Scholar 

  41. Sharma, V.; Duraisamy, G.; Cho, H.M.; Arumugam, K.; Anto-Alosius, M.: Production, combustion and emission impact of bio-mix methyl ester fuel on a stationary light duty diesel engine. J. Clean. Prod. 233, 147–159 (2019). https://doi.org/10.1016/j.jclepro.2019.06.003

    Article  Google Scholar 

  42. Atabani, A.E.; da Silva César, A.: Calophyllum inophyllum L: a prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renew. Sustain. Energy Rev. 37, 644–655 (2014). doi:https://doi.org/10.1016/j.rser.2014.05.037.

  43. Sharma, V.; Duraisamy, G.: Production and characterization of bio-mix fuel produced from a ternary and quaternary mixture of raw oil feedstock. J. Clean. Prod. 221, 271–285 (2019). https://doi.org/10.1016/j.jclepro.2019.02.214

    Article  Google Scholar 

  44. García-Martín, J.F.; Barrios, C.C.; Alvarez, F.-J.A.; Dominguez-Saez, A.; Alvarez-Mateos, P.: Biodiesel production from waste cooking oil in an oscillatory flow reactor: performance as a fuel on a TDI diesel engine. Renewable Energy 125, 546–556 (2018). https://doi.org/10.1016/j.renene.2018.03.002

    Article  Google Scholar 

  45. Rajat, C.; Gupta, A.K.; Chowdhury, R.: Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: parametric sensitivity and fuel quality assessment. Renew Sustain Energy Rev 29, 120–134 (2014). https://doi.org/10.1016/j.rser.2013.08.082

    Article  Google Scholar 

  46. Electricity tariff Tamilnadu; https://www.tangedco.gov.in/tariff.html

  47. Rangasamy, M.; Duraisamy, G.; Govindan, N.: A comprehensive parametric, energy and exergy analysis for oxygenated biofuels based dual-fuel combustion in an automotive light duty diesel engine. Fuel 277, 118167 (2020). https://doi.org/10.1016/j.fuel.2020.118167

    Article  Google Scholar 

  48. Holman, J.P.: Experimental Methods for Engineers, Seventh edn. Tata MCGraw Hill, New Delhi (2007)

  49. Hwang, J.; Qi, D.; Jung, Y.; Bae, C.: Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel. Renew. Energy 63, 9–17 (2014). https://doi.org/10.1016/j.renene.2013.08.051

    Article  Google Scholar 

  50. Balasubramanian, D.; Wongwuttanasatian, T.; Venugopal, I.P.; Rajarajan, A.: Exploration of combustion behavior in a compression ignition engine fuelled with low-viscous Pimpinella anisum and waste cooking oil biodiesel blends. J. Clean. Prod. 331, 129999 (2022). https://doi.org/10.1016/j.jclepro.2021.129999

    Article  Google Scholar 

  51. Kobashi, Y.; Todokoro, M.; Shibata, G.; Ogawa, H.; Mori, T.; Imai, D.: EGR gas composition effects on ignition delays in diesel combustion. Fuel 281, 118730 (2020). https://doi.org/10.1016/j.fuel.2020.118730

    Article  Google Scholar 

  52. Xiumin, Yu.; Guo, Z.; He, L.; Dong, W.; Sun, P.; Yaodong, Du.; Li, Z.; Yang, H.; Wang, S.; Haiming, Wu.: Experimental study on lean-burn characteristics of an SI engine with hydrogen/gasoline combined injection and EGR. Int. J. Hydrog. Energy 44(26), 13988–13998 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.236

    Article  Google Scholar 

  53. Agarwal, A.K.; Singh, A.P.; Maurya, R.K.; Shukla, P.C.; Dhar, A.; Srivastava, D.K.: Combustion characteristics of a common rail direct injection engine using different fuel injection strategies. Int. J. Therm. Sci. 134, 475–484 (2018). https://doi.org/10.1016/j.ijthermalsci.2018.07.001

    Article  Google Scholar 

  54. Khoa, N.X.; Lim, O.: The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine. Appl. Energy 248, 54–63 (2019). https://doi.org/10.1016/j.apenergy.2019.04.075

    Article  Google Scholar 

  55. Yusuff, A.S.; Thompson-Yusuff, K.A.; Igbafe, A.I.: Synthesis of biodiesel via methanolysis of waste frying oil by biowaste-derived catalyst: process optimization and biodiesel blends characterization. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02389-1

    Article  Google Scholar 

  56. Zhang, C.; Zhou, Ao.; Shen, Y.; Li, Y.; Shi, Q.: Effects of combustion duration characteristic on the brake thermal efficiency and NOx emission of a turbocharged diesel engine fueled with diesel-LNG dual-fuel. Appl. Therm. Eng. 127, 312–318 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.034

    Article  Google Scholar 

  57. Dhinesh, B.; Annamalai, M.; Lalvani, I.J.R.; Annamalai, K.: Studies on the influence of combustion bowl modification for the operation of Cymbopogon flexuosus biofuel based diesel blends in a DI diesel engine. Appl Therm Eng 112, 627–637 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.117

    Article  Google Scholar 

  58. Nayak, S.K.; Nižetić, S.; Huang, Z.; Ölçer, A.I.; Bui, V.G.; Wattanavichien, K.; Hoang, A.T.: Influence of injection timing on performance and combustion characteristics of compression ignition engine working on quaternary blends of diesel fuel, mixed biodiesel, and t-butyl peroxide. J. Clean. Prod. 333, 130160 (2022). https://doi.org/10.1016/j.jclepro.2021.130160

    Article  Google Scholar 

  59. Pan, M.; Qian, W.; Zheng, Z.; Huang, R.; Zhou, X.; Huang, H.; Li, M.: The potential of dimethyl carbonate (DMC) as an alternative fuel for compression ignition engines with different EGR rates. Fuel 257, 115920 (2019). https://doi.org/10.1016/j.fuel.2019.115920

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their heartfelt thanks to Head of Department, Mechanical engineering, Kings College of Engineering, Pudukkottai, Affiliated to Anna University, Chennai, for their support to complete this research.

Author information

Authors and Affiliations

Authors

Contributions

MAA performed conceptualization, methodology, investigation, writing—original draft. PT was involved in writing—review & editing and supervision. JJT done methodology, investigation, writing—review & editing. VS performed formal analysis and visualization and provided resources.

Corresponding author

Correspondence to M. Anto Alosius.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alosius, M.A., Thomai, P., Thomas, J.J. et al. Impact of Combined Effects of Injection Pressure and EGR on Modified Stationary Engine Fuelled with Biodiesel Blend Made of Waste Feedstock Oils. Arab J Sci Eng 48, 12389–12405 (2023). https://doi.org/10.1007/s13369-023-07795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07795-9

Keywords

Navigation