Skip to main content
Log in

Decolorization of Methylene Blue Solution by Employing Magnetized Artocarpus heterophyllus Fruit Peel as a Novel Adsorbent

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the significant expansion of industrial activity, dye pollution of natural water systems has become a serious concern. The dyes are considered to be very undesirable pollutants because they are extremely visible, do not biodegrade, and are toxic in nature. Therefore, it has been decided to design an affordable, straightforward, efficient, and simple method for the removal of dyes from wastewater. The present investigation explored the adsorption characteristics of magnetized Artocarpus heterophyllus fruit peel (MAHFP) for the cationic methylene blue dye (MBD). The MAHFP adsorbent was characterized by VSM, SEM/EDAX, FTIR, TEM/SAED, BET, TGA, XRD, and point of zero charge. Batch studies were performed using various laboratory conditions: initial dye concentration, medium pH, adsorbent dosage, and temperature. The optimal conditions for adsorption resulted in a removal efficiency of 91.93%. Langmuir isotherms were well suited to the adsorption of MBD on MAHFP, and the adsorption capacity of 261.35 mg/g was determined for maximum monolayer coverage. The results were best explained by pseudo-second-order kinetics. Adsorption was raised to be thermodynamically feasible and supported by heat absorption and entropy increase. In the regeneration study, MAHFP was regenerated up to five times employing HCl as the most effective desorbing agent. The current adsorbent is an appealing choice for removing MBD from wastewater since it has an extremely high adsorption affinity for dye, is simple to separate, requires low-cost, and is reusable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; von Gunten, U.; Wehrli, B.: Global water pollution and human health. Annu. Rev. Environ. Resour. 35, 109–136 (2010). https://doi.org/10.1146/annurev-environ-100809-125342

    Article  Google Scholar 

  2. Fu, F.; Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  Google Scholar 

  3. Ahmad, T.; Rafatullah, M.; Ghazali, A.; Sulaiman, O.; Hashim, R.: Oil palm biomass-based adsorbents for the removal of water pollutants—a review. J. Environ. Sci. Health Part C 29, 177–222 (2011). https://doi.org/10.1080/10590501.2011.601847

    Article  Google Scholar 

  4. Qamruzzaman; Nasar, A.: Treatment of acetamiprid insecticide from artificially contaminated water by colloidal manganese dioxide in the absence and presence of surfactants. RSC Adv. 4, 62844–62850 (2014). https://doi.org/10.1039/c4ra09685a

    Article  Google Scholar 

  5. Kant, R.: Textile dyeing industry an environmental hazard. Nat. Sci. 04, 22–26 (2012). https://doi.org/10.4236/ns.2012.41004

    Article  Google Scholar 

  6. Verma, A.K.; Dash, R.R.; Bhunia, P.: A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 93, 154–168 (2012). https://doi.org/10.1016/j.jenvman.2011.09.012

    Article  Google Scholar 

  7. Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K.: Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater. Adv. 2, 4497–4531 (2021). https://doi.org/10.1039/D1MA00354B

    Article  Google Scholar 

  8. Crini, G.: Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97, 1061–1085 (2006). https://doi.org/10.1016/j.biortech.2005.05.001

    Article  Google Scholar 

  9. Munagapati, V.S.; Kim, D.S.: Adsorption of anionic azo dye congo red from aqueous solution by cationic modified orange peel powder. J. Mol. Liq. 220, 540–548 (2016). https://doi.org/10.1016/j.molliq.2016.04.119

    Article  Google Scholar 

  10. Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C.: Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3, 275–290 (2019). https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  11. Lee, J.W.; Choi, S.P.; Thiruvenkatachari, R.; Shim, W.G.; Moon, H.: Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dye. Pigment. 69, 196–203 (2006). https://doi.org/10.1016/j.dyepig.2005.03.008

    Article  Google Scholar 

  12. Butani, S.A.; Mane, S.J.: Coagulation/flocculation process for cationic, anionic dye removal using water treatment residuals—a review. Int. J. Sci. Technol. Manag. 6, 121–125 (2017)

    Google Scholar 

  13. Marin, N.M.; Pascu, L.F.; Demba, A.; Nita-Lazar, M.; Badea, I.A.; Aboul-Enein, H.Y.: Removal of the acid orange 10 by ion exchange and microbiological methods. Int. J. Environ. Sci. Technol. 16, 6357–6366 (2019). https://doi.org/10.1007/s13762-018-2164-2

    Article  Google Scholar 

  14. Joseph, J.; Radhakrishnan, R.C.; Johnson, J.K.; Joy, S.P.; Thomas, J.: Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater. Chem. Phys. 242, 122488 (2020). https://doi.org/10.1016/j.matchemphys.2019.122488

    Article  Google Scholar 

  15. Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A.: Electrodialysis desalination for water and wastewater: a review. Chem. Eng. J. 380, 122231 (2020). https://doi.org/10.1016/j.cej.2019.122231

    Article  Google Scholar 

  16. Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P.: Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009). https://doi.org/10.1016/j.watres.2009.03.010

    Article  Google Scholar 

  17. Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N.: Reverse osmosis desalination: a state-of-the-art review. Desalination 459, 59–104 (2019). https://doi.org/10.1016/j.desal.2019.02.008

    Article  Google Scholar 

  18. Muruganandham, M.; Amutha, R.; Repo, E.; Sillanpää, M.; Kusumoto, Y.; Abdulla-Al-Mamun, M.: Controlled mesoporous self-assembly of ZnS microsphere for photocatalytic degradation of Methyl Orange dye. J. Photochem. Photobiol. A Chem. 216, 133–141 (2010). https://doi.org/10.1016/j.jphotochem.2010.06.008

    Article  Google Scholar 

  19. Hameed, B.H.; Mahmoud, D.K.; Ahmad, A.L.: Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids Surf. A Physicochem. Eng. Asp. 316, 78–84 (2008). https://doi.org/10.1016/j.colsurfa.2007.08.033

    Article  Google Scholar 

  20. Chakraborty, S.; Purkait, M.K.; DasGupta, S.; De, S.; Basu, J.K.: Nanofiltration of textile plant effluent for color removal and reduction in COD. Sep. Purif. Technol. 31, 141–151 (2003). https://doi.org/10.1016/S1383-5866(02)00177-6

    Article  Google Scholar 

  21. Khamparia, S.; Jaspal, D.K.: Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Front. Environ. Sci. Eng. 11, 8 (2017). https://doi.org/10.1007/s11783-017-0899-5

    Article  Google Scholar 

  22. Qamruzzaman; Nasar, A.: Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants. Chem. Pap. 68, 65–73 (2014). https://doi.org/10.2478/s11696-013-0424-7

    Article  Google Scholar 

  23. Qamruzzaman; Nasar, A.: Degradation of acephate by colloidal manganese dioxide in the absence and presence of surfactants. Desalin. Water Treat. 55, 2155–2164 (2015). https://doi.org/10.1080/19443994.2014.937752

    Article  Google Scholar 

  24. Aragaw, T.A.; Bogale, F.M.: Biomass-based adsorbents for removal of dyes from wastewater: a review. Front. Environ. Sci. (2021). https://doi.org/10.3389/fenvs.2021.764958

    Article  Google Scholar 

  25. Soltani, A.; Faramarzi, M.; Mousavi Parsa, S.A.: A review on adsorbent parameters for removal of dye products from industrial wastewater. Water Qual. Res. J. 56, 181–193 (2021). https://doi.org/10.2166/wqrj.2021.023

    Article  Google Scholar 

  26. Hossain, M.A.; Ngo, H.H.; Guo, W.S.; Setiadi, T.: Adsorption and desorption of copper(II) ions onto garden grass. Bioresour. Technol. 121, 386–395 (2012). https://doi.org/10.1016/j.biortech.2012.06.119

    Article  Google Scholar 

  27. Tsai, W.T.; Yang, J.M.; Lai, C.W.; Cheng, Y.H.; Lin, C.C.; Yeh, C.W.: Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 97, 488–493 (2006). https://doi.org/10.1016/j.biortech.2005.02.050

    Article  Google Scholar 

  28. El-Azazy, M.; El-Shafie, A.S.; Issa, A.A.; Al-Sulaiti, M.; Al-Yafie, J.; Shomar, B.; Al-Saad, K.: Potato peels as an adsorbent for heavy metals from aqueous solutions: eco-structuring of a green adsorbent operating plackett-burman design. J. Chem. 2019, 1–14 (2019). https://doi.org/10.1155/2019/4926240

    Article  Google Scholar 

  29. Ahmed, M.; Nasar, A.: Utilization of jackfruit peel as a low-cost adsorbent for the removal of methylene blue dye from synthetically polluted water. Curr. Anal. Chem. 17, 1016–1026 (2021). https://doi.org/10.2174/1573411016666200203153318

    Article  Google Scholar 

  30. Yagub, M.T.; Sen, T.K.; Ang, H.M.: Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. Water Air Soil Pollut. 223, 5267–5282 (2012). https://doi.org/10.1007/s11270-012-1277-3

    Article  Google Scholar 

  31. Pavan, F.A.; Mazzocato, A.C.; Gushikem, Y.: Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent. Bioresour. Technol. 99, 3162–3165 (2008). https://doi.org/10.1016/j.biortech.2007.05.067

    Article  Google Scholar 

  32. Ezeonuegbu, B.A.; Machido, D.A.; Whong, C.M.Z.; Japhet, W.S.; Alexiou, A.; Elazab, S.T.; Qusty, N.; Yaro, C.A.; Batiha, G.E.-S.: Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnol. Rep. 30, e00614 (2021). https://doi.org/10.1016/j.btre.2021.e00614

    Article  Google Scholar 

  33. Çelebi, H.; Gök, G.; Gök, O.: Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium(II), nickel(II), and zinc(II) heavy metal ions. Sci. Rep. 10, 17570 (2020). https://doi.org/10.1038/s41598-020-74553-4

    Article  Google Scholar 

  34. Nasar, A.: Utilization of tea wastes for the removal of toxic dyes from polluted water—a review. Biomass Convers. Biorefinery 13, 1399–1415 (2023). https://doi.org/10.1007/s13399-020-01205-y

    Article  Google Scholar 

  35. Kim, M.-S.; Kim, J.-G.: Adsorption characteristics of spent coffee grounds as an alternative adsorbent for cadmium in solution. Environments 7, 24 (2020). https://doi.org/10.3390/environments7040024

    Article  Google Scholar 

  36. Anastopoulos, I.; Karamesouti, M.; Mitropoulos, A.C.; Kyzas, G.Z.: A review for coffee adsorbents. J. Mol. Liq. 229, 555–565 (2017). https://doi.org/10.1016/j.molliq.2016.12.096

    Article  Google Scholar 

  37. Sartape, A.S.; Mandhare, A.M.; Jadhav, V.V.; Raut, P.D.; Anuse, M.A.; Kolekar, S.S.: Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab. J. Chem. 10, S3229–S3238 (2017). https://doi.org/10.1016/j.arabjc.2013.12.019

    Article  Google Scholar 

  38. Jagadeesh, S.L.; Reddy, B.S.; Swamy, G.S.K.; Gorbal, K.; Hegde, L.; Raghavan, G.S.V.: Chemical composition of jackfruit (Artocarpus heterophyllus Lam.) selections of Western Ghats of India. Food Chem. 102, 361–365 (2007). https://doi.org/10.1016/j.foodchem.2006.05.027

    Article  Google Scholar 

  39. Mashkoor, F.; Nasar, A.: Magsorbents: potential candidates in wastewater treatment technology—a review on the removal of methylene blue dye. J. Magn. Magn. Mater. 500, 166408 (2020). https://doi.org/10.1016/j.jmmm.2020.166408

    Article  Google Scholar 

  40. Medhat, A.; El-Maghrabi, H.H.; Abdelghany, A.; Abdel Menem, N.M.; Raynaud, P.; Moustafa, Y.M.; Elsayed, M.A.; Nada, A.A.: Efficiently activated carbons from corn cob for methylene blue adsorption. Appl. Surf. Sci. Adv. 3, 100037 (2021). https://doi.org/10.1016/j.apsadv.2020.100037

    Article  Google Scholar 

  41. Ahmed, M.; Mashkoor, F.; Nasar, A.: Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution. Groundw. Sustain. Dev. 10, 100322 (2020). https://doi.org/10.1016/j.gsd.2019.100322

    Article  Google Scholar 

  42. Lawagon, C.P.; Amon, R.E.C.: Magnetic rice husk ash “cleanser” as efficient methylene blue adsorbent. Environ. Eng. Res. 25, 685–692 (2019). https://doi.org/10.4491/eer.2019.287

    Article  Google Scholar 

  43. Xia, Y.; Yao, Q.; Zhang, W.; Zhang, Y.; Zhao, M.: Comparative adsorption of methylene blue by magnetic baker’s yeast and EDTAD-modified magnetic baker’s yeast: equilibrium and kinetic study. Arab. J. Chem. 12, 2448–2456 (2019). https://doi.org/10.1016/j.arabjc.2015.03.010

    Article  Google Scholar 

  44. Cheng, S.; Zhang, L.; Ma, A.; Xia, H.; Peng, J.; Li, C.; Shu, J.: Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater. J. Environ. Sci. 65, 92–102 (2018). https://doi.org/10.1016/j.jes.2016.12.027

    Article  Google Scholar 

  45. Li, C.; Wang, X.; Meng, D.; Zhou, L.: Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int. J. Biol. Macromol. 107, 1871–1878 (2018). https://doi.org/10.1016/j.ijbiomac.2017.10.058

    Article  Google Scholar 

  46. Zhu, H.-Y.; Fu, Y.-Q.; Jiang, R.; Jiang, J.-H.; Xiao, L.; Zeng, G.-M.; Zhao, S.-L.; Wang, Y.: Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 173, 494–502 (2011). https://doi.org/10.1016/j.cej.2011.08.020

    Article  Google Scholar 

  47. Ponnusami, V.; Vikram, S.; Srivastava, S.N.: Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions. J. Hazard. Mater. 152, 276–286 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.107

    Article  Google Scholar 

  48. Mashkoor, F.; Nasar, A.: Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. J. Mol. Liq. 274, 315–327 (2019). https://doi.org/10.1016/j.molliq.2018.10.119

    Article  Google Scholar 

  49. Feng, Y.; Gong, J.-L.; Zeng, G.-M.; Niu, Q.-Y.; Zhang, H.-Y.; Niu, C.-G.; Deng, J.-H.; Yan, M.: Adsorption of Cd(II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem. Eng. J. 162, 487–494 (2010). https://doi.org/10.1016/j.cej.2010.05.049

    Article  Google Scholar 

  50. Gupta, V.K.; Nayak, A.: Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 180, 81–90 (2012). https://doi.org/10.1016/j.cej.2011.11.006

    Article  Google Scholar 

  51. Ali, I.; Peng, C.; Ye, T.; Naz, I.: Sorption of cationic malachite green dye on phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid. RSC Adv. 8, 8878–8897 (2018). https://doi.org/10.1039/C8RA00245B

    Article  Google Scholar 

  52. Mashkoor, F.; Nasar, A.; Asiri, A.M.: Exploring the reusability of synthetically contaminated wastewater containing crystal violet dye using tectona grandis sawdust as a very low-cost adsorbent. Sci. Rep. 8, 8314 (2018). https://doi.org/10.1038/s41598-018-26655-3

    Article  Google Scholar 

  53. Kataria, N.; Garg, V.K.: Application of EDTA modified Fe3O4/sawdust carbon nanocomposites to ameliorate methylene blue and brilliant green dye laden water. Environ. Res. 172, 43–54 (2019). https://doi.org/10.1016/j.envres.2019.02.002

    Article  Google Scholar 

  54. Alizadeh, N.; Shariati, S.; Besharati, N.: Adsorption of crystal violet and methylene blue on azolla and fig leaves modified with magnetite iron oxide nanoparticles. Int. J. Environ. Res. 11, 197–206 (2017). https://doi.org/10.1007/s41742-017-0019-1

    Article  Google Scholar 

  55. El Messaoudi, N.; El Khomri, M.; Dbik, A.; Bentahar, S.; Lacherai, A.; Bakiz, B.: Biosorption of Congo red in a fixed-bed column from aqueous solution using jujube shell: experimental and mathematical modeling. J. Environ. Chem. Eng. 4, 3848–3855 (2016). https://doi.org/10.1016/j.jece.2016.08.027

    Article  Google Scholar 

  56. Chizari Fard, G.; Mirjalili, M.; Najafi, F.: Hydroxylated α-Fe2O3 nanofiber: optimization of synthesis conditions, anionic dyes adsorption kinetic, isotherm and error analysis. J. Taiwan Inst. Chem. Eng. 70, 188–199 (2017). https://doi.org/10.1016/j.jtice.2016.10.045

    Article  Google Scholar 

  57. Foo, K.Y.; Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010). https://doi.org/10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  58. Singh, D.K.; Mohan, S.; Kumar, V.; Hasan, S.H.: Kinetic, isotherm and thermodynamic studies of adsorption behaviour of CNT/CuO nanocomposite for the removal of As(III) and As(V) from water. RSC Adv. 6, 1218–1230 (2016). https://doi.org/10.1039/C5RA20601D

    Article  Google Scholar 

  59. Zhou, C.H.; Zhao, L.Z.; Wang, A.Q.; Chen, T.H.; He, H.P.: Current fundamental and applied research into clay minerals in China. Appl. Clay Sci. 119, 3–7 (2016). https://doi.org/10.1016/j.clay.2015.07.043

    Article  Google Scholar 

  60. Ai, L.; Zhou, Y.; Jiang, J.: Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266, 72–77 (2011). https://doi.org/10.1016/j.desal.2010.08.004

    Article  Google Scholar 

  61. Zargar, B.; Parham, H.; Rezazade, M.: Fast removal and recovery of methylene blue by activated carbon modified with magnetic iron oxide nanoparticles. J. Chin. Chem. Soc. 58, 694–699 (2011). https://doi.org/10.1002/jccs.201190108

    Article  Google Scholar 

  62. Yan, H.; Li, H.; Yang, H.; Li, A.; Cheng, R.: Removal of various cationic dyes from aqueous solutions using a kind of fully biodegradable magnetic composite microsphere. Chem. Eng. J. 223, 402–411 (2013). https://doi.org/10.1016/j.cej.2013.02.113

    Article  Google Scholar 

  63. Sekhavat Pour, Z.; Ghaemy, M.: Removal of dyes and heavy metal ions from water by magnetic hydrogel beads based on poly(vinyl alcohol)/carboxymethyl starch-g-poly(vinyl imidazole). RSC Adv. 5, 64106–64118 (2015). https://doi.org/10.1039/C5RA08025H

    Article  Google Scholar 

  64. Tural, B.; Ertaş, E.; Enez, B.; Fincan, S.A.; Tural, S.: Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus subtilis : kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue. J. Environ. Chem. Eng. 5, 4795–4802 (2017). https://doi.org/10.1016/j.jece.2017.09.019

    Article  Google Scholar 

  65. Othman, N.H.; Alias, N.H.; Shahruddin, M.Z.; Abu Bakar, N.F.; Nik Him, N.R.; Lau, W.J.: Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. J. Environ. Chem. Eng. 6, 2803–2811 (2018). https://doi.org/10.1016/j.jece.2018.04.024

    Article  Google Scholar 

  66. Shakoor, S.; Nasar, A.: Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste. Groundw. Sustain. Dev. 7, 30–38 (2018). https://doi.org/10.1016/j.gsd.2018.03.004

    Article  Google Scholar 

  67. Leng, L.; Yuan, X.; Zeng, G.; Shao, J.; Chen, X.; Wu, Z.; Wang, H.; Peng, X.: Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel 155, 77–85 (2015). https://doi.org/10.1016/j.fuel.2015.04.019

    Article  Google Scholar 

  68. Wahab, M.A.; Jellali, S.; Jedidi, N.: Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour. Technol. 101, 5070–5075 (2010). https://doi.org/10.1016/j.biortech.2010.01.121

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Chairperson of the Department of Applied Chemistry, Faculty of Engineering and Technology, AMU, for extending laboratory facilities.

Author information

Authors and Affiliations

Authors

Contributions

MA conducted the experiments. AN managed and supervised the work. MA and AN interpreted and analyzed the experimental data. AN assisted MA in manuscript writing. All the authors discussed the manuscript and decided to submit the manuscript.

Corresponding author

Correspondence to Abu Nasar.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M., Nasar, A. Decolorization of Methylene Blue Solution by Employing Magnetized Artocarpus heterophyllus Fruit Peel as a Novel Adsorbent. Arab J Sci Eng 48, 7647–7659 (2023). https://doi.org/10.1007/s13369-023-07673-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07673-4

Keywords

Navigation