Skip to main content
Log in

The Image Processing System for Ultra-Fast Moving Space Debris Objects

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The ever-increasing number of space debris objects on the Earth’s orbit presents a danger to existing functional satellites and human infrastructure. These objects need to be tracked to be documented and catalogued. The paper addresses the development of an image processing and data reduction pipeline to process space debris tracking observations from an optical passive sensor. The pipeline starts from the raw, un-calibrated camera frames and ends with the formation of “tracklets”, i.e. consecutive series of celestial positions of the objects of interest and possibly an identification of these objects based on a reference catalogue. The paper is, on one hand, improving existing software modules, and, on the other hand, adding a series of new modules to the pipeline. The validation of the system’s results in both astrometry and photometry and proves that it is one of the few capable of observing and processing low-Earth orbit objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. US Space Surveillance Network. SPACETRACK (2021). https://www.space-track.org/documentation#/faq. Accessed 2021

  2. European Space Agency. Space Situational Awareness (2021). https://www.esa.int/Enabling_Support/Operations/Space_Situational_Awareness. Accessed 2021

  3. Bertin, E.; Arnouts, S.: SExtractor: source extractor. In: Astrophysics Source Code Library. p. ascl–1010 (2010)

  4. Mink, J.: Exploring space, time, and data with WCSTools. Astron. Data Anal. Softw. Syst. XXVII 523, 281 (2019)

    Google Scholar 

  5. Lang, D.; Hogg, D.W.; Mierle, K.; Blanton, M.; Roweis, S.: Astrometry.net: Blind astrometric calibration of arbitrary astronomical images. Astron. J. 137, 1782–2800 (2010) arXiv:0910.2233

    Article  Google Scholar 

  6. Park, J.H.; Yim, H.S.; Choi, Y.J.; Jo, J.H.; Moon, H.K.; Park, Y.S.; et al.: OWL-Net: a global network of robotic telescopes for satellite observation. Adv. Space Res. 62(1), 152–163 (2018)

    Article  Google Scholar 

  7. Kouprianov, V.: Distinguishing features of CCD astrometry of faint GEO objects. Adv. Space Res. 41(7), 1029–1038 (2008)

    Article  Google Scholar 

  8. Schildknecht, T.; Hugentobler, U.; Verdun, A.; Beutler, G.: CCD Algorithms for space debris detection. In: ESA Study Final Report (1995)

  9. Sotak, G.E.; Boyer, K.L.: The Laplacian-of-gaussian kernel: a formal analysis and design procedure for fast, accurate convolution and full-frame output. Comput. Vis. Graph. Image Process. 48(2), 147–189 (1989)

    Article  Google Scholar 

  10. Chen, B.Y.: An explicit formula of Hessian determinants of composite functions and its applications. Kragujevac J. Math. 06(36), 27–39 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Kim, D.W.: ASTRiDE: Automated streak detection for astronomical images (2016)

  12. Wang, H.; Xu, E.; Li, Z.; Jingjin, L.; Qin, T.: Gaussian analytic centroiding method of star image of star tracker. Adv. Space Res. 09, 56 (2015)

    Google Scholar 

  13. Virtanen, J.; Poikonen, J.; Säntti, T.; Komulainen, T.; Torppa, J.; Granvik, M.; et al.: Streak detection and analysis pipeline for space-debris optical images. Adv. Space Res. 57(8), 1607–1623 (2016)

    Article  Google Scholar 

  14. Vereš, P.; Jedicke, R.; Denneau, L.; Wainscoat, R.; Holman, M.J.; Lin, H.W.: Improved asteroid astrometry and photometry with trail fitting. Publ. Astron. Soc. Pac. 124(921), 1197 (2012)

    Article  Google Scholar 

  15. Gander, W.; Golub, G.H.; Strebel, R.: Least-squares fitting of circles and ellipses. BIT Numer. Math. 34(4), 558–578 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Šilha, J.; Krajčovič, S.; Zigo, M.; Tóth, J.; Žilková, D.; Zigo, P.; et al.: Space debris observations with the Slovak AGO70 telescope: astrometry and light curves. Adv. Space Res. 65(8), 2018–2035 (2020)

    Article  Google Scholar 

  17. Šilha, J.; Krajčovič, S.; Zigo, M.; Tóth, J.; Kornoš, L.; Zigo, P. et al.: AGO70 telescope Slovak optical system for space debris research surveillance and SLR tracking support. In: First International Orbital Debris Conference (2019)

  18. Collins, K.A.; Kielkopf, J.F.; Stassun, K.G.; Hessman, F.V.: AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153(2), 77 (2017). https://doi.org/10.3847/1538-3881/153/2/77

    Article  Google Scholar 

  19. Pence, W.D.; Chiappetti, L.; Page, C.G.; Shaw, R.A.; Stobie, E.: Definition of the flexible image transport system (FITS), version 3.0. Astron. Astrophys. 524, A42 (2010)

    Article  Google Scholar 

  20. Pence, W.D.: CFITSIO, v2.0: A New Full-Featured Data Interface. In: Mehringer, D.M., Plante, R.L., Roberts, D.A. (eds). Astronomical Data Analysis Software and Systems VIII. vol. 172 of Astronomical Society of the Pacific Conference Series, p. 487 (1999)

  21. Krajčovič, S.; Durikovič, R.; Šilha, J.: Selected modules from the Slovak Image Processing Pipeline for space debris and near earth objects observations and research. In: 2019 23rd International Conference Information Visualisation (IV), pp. 112–117. IEEE (2019)

  22. Krajčovič, S.; Ďurikovič, R.; Šilha, J.: Masking and tracklet building for space debris and NEO observations: the Slovak image processing pipeline. In: Advancements in Computer Vision Applications in Intelligent Systems and Multimedia Technologies, pp. 38–56. IGI Global (2020)

  23. Jilete, B.; Flohrer, T.; Mancas, A.; Castro, J.; Siminski, J.: Acquiring observations for test and validation in the space surveillance and tracking segment of ESA’s SSA Programme. J. Space Saf. Eng. (2019). http://www.sciencedirect.com/science/article/pii/S2468896719300278

  24. Green, R.M.: Spherical Astronomy, vol. 520. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  25. Šilha, J.; Tóth, J.: Observations of orbital debris and satellites in Slovak Republic. In: 38th COSPAR Scientific Assembly, vol. 38, p. 3 (2010)

  26. The International Astronomical Union. Format for Optical Astrometric Observations of Comets, Minor Planets and Natural Satellites. https://minorplanetcenter.net/iau/info/OpticalObs.html. Accessed 01 April 2022

  27. The Consultative Committee for Space Debris Systems. Recommendation for Space Data System Standards: Tracking Data Message (2020). https://public.ccsds.org/Pubs/503x0b2c1.pdf. Accessed 01 April 2022

  28. Ferg, S.R.: EasyGUI: A module for simple GUI programming (2014)

  29. Beutler, G.: Methods of Celestial Mechanics, Volume II: Application to Planetary System, Geodynamics and Satellite Geodesy. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  30. Kerr, E.; Sánchez-Ortiz: state of the art and future needs in conjunction analysis methods, processes and software. In: 8th European Conference on Space Debris (2021)

  31. Šilha, J.; Zigo, M.; Hrobár, T.; Jevčák, P.: Light curves application to space debris characterization and classification. In: Proceedings of 8th European Conference on Space Debris, ESA/ESOC, Darmstadt, Germany, 2021 (2021). https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/168

  32. Santoni, F.; Cordelli, E.; Piergentili, F.: Determination of disposed-upper-stage attitude motion by ground-based optical observations. J. Spacecr. Rocket. 50(3), 701–708 (2013)

    Article  Google Scholar 

  33. Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M.: The international laser ranging service. Adv. Space Res. 30(2), 135–143 (2002)

    Article  Google Scholar 

  34. Šilha, J.; Zigo, P.; Zigo, M.; Jevčák, P.; Krajčovič, S.; Steindorfer, M.; et al.: AGO70: passive optical system to support SLR tracking of space debris on LEO. In: Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) (2021)

Download references

Funding

Funding was provided by ESA Contract No. 4000136672/21/ NL/SC “Validation of re-entry models by using real optical measurements obtained by AMOS global network (Amos-Reentry)”. (Grant Number 4000136672/21/NL/SC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Krajčovič.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krajčovič, S., Šilha, J., Zigo, M. et al. The Image Processing System for Ultra-Fast Moving Space Debris Objects. Arab J Sci Eng 48, 10589–10604 (2023). https://doi.org/10.1007/s13369-023-07669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07669-0

Keywords

Navigation