Skip to main content
Log in

Investigation of CO Methanation with Different Carbon-Supported Ni-, Fe-, and Co-Containing Catalysts

  • Research Article-chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Catalysts (metaloxide/carbon support) for carbon monoxide methanation were prepared with two different preparation methods using three different metals and three different carbon supports. While nickel (Ni), iron (Fe), and cobalt (Co) were used as metals, graphene oxide, activated carbon and mesoporous carbon were used as carbon support. Two traditional preparation methods, impregnation and co-precipitation, were used in order to prepare the catalysts. The X-ray diffraction, N2 physisorption, high-resolution transmission electron microscopy, and scanning electron microscopy analysis were used to characterize the catalysts. The CO methanation studies were conducted on all catalysts. The highest surface area results were obtained over the iron oxide composed catalysts. It was found that the impregnation method is the most suitable method for obtaining a high surface area. The average pore diameters of the catalysts entered to the mesopore diameter scale in the Dubinin classification. Except for active carbon-supported iron and cobalt catalysts, other catalysts have crystal phases due to the NiO, Fe2O3, and Co3O4, according to the composition of catalysts. Activated carbon-supported iron and cobalt catalysts showed an amorphous phase structure. The catalysts prepared by the impregnation method had higher activity. Higher activities were obtained from the graphene oxide supported catalysts. When activities were evaluated in terms of active component (metal oxide) type, cobalt oxide active component provided better results. Co3O4/graphene oxide catalyst prepared by the impregnation method leads to 100% CO conversion and 85% CH4 formation at 275 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig.13

Similar content being viewed by others

References

  1. Zeng, Q.; Li, Z.; Zhou, Y.: Synthesis and applications of carbon nanotubes. J. Nat. Gas Chem. 15, 235–246 (2006)

    Article  Google Scholar 

  2. Yang, Y.; Chiang, K.; Burke, N.: Porous carbon-supported catalysts for energy and environmental applications: A short review. Catal. Today 178, 197–205 (2011)

    Article  Google Scholar 

  3. Sanchez, E.; Yang, Y.; Find, J.; Braun, Th.; Schoonmaker, R.; Belz, T.; Sauer, H.; Spillecke, O.; Uchida, Y.; Schlögl, R.: Elementel carbon as catalytic material: Recent trends and perspectives. Sci. Technol. Catal. 212, 317–326 (1999)

    Google Scholar 

  4. Chen, L.; Song, G.; Fu, Y.; Shen, J.: The effects of promoters of K and Zr on the mesoporous carbon supported cobalt catalysts for Fischer–Tropsch synthesis. J. Coll. Interf. Sci. 368, 456–461 (2011)

    Article  Google Scholar 

  5. Díaz, J.A.; Fernández, M.M.; Romero, A.; Valverde, J.L.: Synthesis of carbon nanofibers supported cobalt catalysts for Fischer–Tropsch process. Fuel 111, 422–429 (2013)

    Article  Google Scholar 

  6. Díaz, J.A.; Osa, A.R.; Sánchez, P.; Romero, A.; Valverde, J.L.: Influence of CO2 co-feeding on Fischer–Tropsch fuels production over carbon nanofibers supported cobalt catalyst. Catal. Commun. 44, 57–61 (2013)

    Article  Google Scholar 

  7. Díaz, J.A.; Akhavan, H.; Romero, A.; García-Minguillan, A.; Romero, R.; Giroir-Fendler, A.; Valverde, J.L.: Cobalt and iron supported on carbon nanofibers as catalysts for Fischer–Tropsch synthesis. Fuel Proces. Technol. 128, 417–424 (2014)

    Article  Google Scholar 

  8. Díaz, J.A.; Romero, A.; García-Minguillan, A.M.; Giroir-Fendler, A.; Valverde, J.L.: Carbon nanofibers and nanospheres-supported bimetallic (Co and Fe) catalysts for the Fischer–Tropsch synthesis. Fuel Proces. Technol. 138, 455–462 (2015)

    Article  Google Scholar 

  9. Ubago-Perez, R.; Carrasco-Marin, F.; Moreno-Castilla, C.: Carbon-supported Pt as catalysts for low-temperature methanol decomposition to carbon monoxide and hydrogen. Appl. Catal. A Gen. 275, 119–126 (2004)

    Article  Google Scholar 

  10. Xuezhi, D.; Jinghong, Z.; Gang, Q.; Ping, L.; Xinggui, Z.; De, C.: Carbon nanofiber-supported Ru catalysts for hydrogen evolution by ammonia decomposition. Chin. J. Catal. 31, 979–986 (2010)

    Article  Google Scholar 

  11. Donphaia, W.; Faungnawakij, K.; Chareonpanicha, M.; Limtrakul, J.: Effect of Ni-CNTs/mesocellular silica composite catalysts on carbondioxide reforming of methane. Appl. Catal. A Gen. 475, 16–26 (2014)

    Article  Google Scholar 

  12. Palacioa, R.; Gallego, J.; Gabelica, Z.; Batiot-Dupeyrat, C.; Barraulta, J.; Valangea, S.: Decomposition of ethanol into H2-rich gas and carbon nanotubes over Ni, Co and Fe supported on SBA-15 and Aerosil. Appl. Catal. A Gen. 504, 642–653 (2015)

    Article  Google Scholar 

  13. Chiou, J.Y.Z.; Kung, H.Y.; Wang, C.B.: Highly stable and active Ni-doped ordered mesoporous carbon catalyst on the steam reforming of ethanol application. J. Saudi Chem. Soci. 21(2), 205–209 (2017)

    Article  Google Scholar 

  14. Meng, T.; Xu, Q.Q.; Li, Y.T.; Chang, J.L.; Ren, T.Z.; Yuan, Z.Y.: Nickel nanoparticles highly dispersed on reduced graphene oxide for ammonia decomposition to hydrogen. J. Ind. Eng. Chem. 32, 373–379 (2015)

    Article  Google Scholar 

  15. Surisetty, V.R.; Tavasoli, A.; Dalai, A.K.: Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes. Appl. Catal. A Gen. 365, 243–251 (2009)

    Article  Google Scholar 

  16. Kim, T.W.; Kim, M.J.; Chae, H.J.; Ha, K.S.; Kim, C.U.: Ordered mesoporous carbon supported uniform rhodium nanoparticles as catalysts for higher alcohol synthesis from syngas. Fuel 160, 393–403 (2015)

    Article  Google Scholar 

  17. Jiméneza, V.; Sáncheza, P.; Panagiotopoulou, P.; Valverdea, J.L.; Romero, A.: Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts. Appl. Catal. A Gen. 390, 35–44 (2010)

    Article  Google Scholar 

  18. Li, B.; Wang, C.; Yi, G.; Lin, H.; Yuan, Y.: Enhanced performance of Ru nanoparticles confined in carbon nanotubes for CO preferential oxidation in a H2-rich stream. Catal. Today. 164, 74–79 (2011)

    Article  Google Scholar 

  19. Niu, T.; Liu, G.L.; Liu, Y.: Preparation of Ru/graphene-meso-macroporous SiO2 composite and their application to the preferential oxidation of CO in H2-rich gases. Appl. Catal. B Environ. 154–155, 82–92 (2014)

    Article  Google Scholar 

  20. Chen, J.; Cao, F.; Qu, R.; Gao, X.; Cen, K.: Bimetallic cerium–copper nanoparticles embedded in ordered mesoporous carbons as effective catalysts for the selective catalytic reduction of NO with NH3. J. Coll. Interf. Sci. 456, 66–75 (2015)

    Article  Google Scholar 

  21. Romero-Sáez, M.; Dongil, A.B.; Bentino, N.; Espinoza-González, R.; Escalona, N.; Gracia, F.: CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: A comparison between two impregnation strategies. Appl. Catal. B Environ. 237, 817–825 (2018)

    Article  Google Scholar 

  22. Wang, W.; Chu, W.; Wang, N.; Yang, W.; Jiang, C.: Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation. Int. J. Hyd. Energy 41, 967–975 (2016)

    Article  Google Scholar 

  23. Dey, S.; Dhal, G.C.: Cerium catalysts applications in carbon monoxide oxidations Mater. Sci. Energy Technol. 3(6), 24 (2020)

    Google Scholar 

  24. Romero-Sáez, M.; Dongil, A.B.; Benito, N.; Espinoza-Gonzáleza, R.; Escalona, N.; Gracia, F.: CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: A comparison between two impregnation strategies. Appl. Catal. B Environ. 237, 817–825 (2018)

    Article  Google Scholar 

  25. Truszkiewicz, E.; Kowalczyk, K.; Debska, A.; Wojda, D.; Iwanek, E.; Kepinski, L.; Mierzwa, B.: Methanation of CO on Ru/graphitized-carbon catalysts: Effects of the preparation method and the carbon support structure. Int. J. Hyd. Energy 45, 31985–31999 (2020)

    Article  Google Scholar 

  26. Gödde, J.; Merko, M.; Xia, W.; Muhler, M.: Nickel nanoparticles supported on nitrogen–doped carbon nanotubes are a highly active, selective and stable CO2 methanation catalyst. J. Energy Chem. 54, 323–331 (2021)

    Article  Google Scholar 

  27. Ahmad, K.N.; Isahak, W.N.R.W.; Rosli, M.I.; Yusop, M.R.; Kassim, M.B.; Yarmo, M.A.: Rare earth metal doped nickel catalysts supported on exfoliated graphitic carbon nitride for highly selective CO and CO2 methanation. Appl. Surf. Sci. 571, 151321 (2022)

    Article  Google Scholar 

  28. Xiong, J.; Dong, X.; Li, L.: CO selective methanation in hydrogen-rich gas mixtures over carbon nanotube supported Ru-based catalysts. J. Nat. Gas. Chem. 21, 445–451 (2012)

    Article  Google Scholar 

  29. Lawal, I.A.; Lawal, M.M.; Azeez, M.A.; Ndungu, P.: Theoretical and experimental adsorption studies of phenol and crystal violet dye on carbon nanotube functionalized with deep eutectic solvent. J. Mol. Liquids 288, 110895 (2019)

    Article  Google Scholar 

  30. Cui, G.Y.; Wang, C.Y.; Xiang, G.Q.; Zhou, B.: An electrochemical sensor based on nitrogen doped carbon material prepared from nitrogen-containing precursors. In: IOP Conference Series: Materials Science Engineering. 292, 012034 (2018)

  31. Wibawa, P.J.; Nur, M.; Asy’ari, M.; Nur, H.: SEM, XRD and FTIR analyses of both ultrasonic and heat generated activated carbon black microstructures. Heliyon 6(3), e03546 (2020)

    Article  Google Scholar 

  32. Aravind, M.; Amalanathan, M.: Structural, morphological, and optical properties of country egg shell derived activated carbon for dye removal. Mater. Today Proc. 43(2), 1491–1495 (2021)

    Article  Google Scholar 

  33. Ramesh, S.; Karuppasamy, K.; Vikraman, D.; Kim, E.; Sanjeeb, L.; Lee, Y.J.; Kim, H.S.; Kim, J.H.; Kim, H.S.: Hierarchical Co3O4 decorated nitrogen-doped graphene oxide nanosheets for energy storage and gas sensing applications. J. Ind. Eng. Chem. 101, 253–261 (2021)

    Article  Google Scholar 

  34. Hussain, I.; Jalil, A.A.; Hassan, N.S.; Farooq, M.; Mujtaba, M.A.; Hamid, M.Y.S.; Sharif, H.M.A.; Nabgan, W.; Aziz, M.A.H.; Owgi, A.H.K.: Contemporary thrust and emerging prospects of catalytic systems for substitute natural gas production by CO methanation. Fuel 311, 122604 (2022)

    Article  Google Scholar 

  35. Kang, S.H.; Ryu, J.H.; Kim, J.H.; Seo, S.J.; Yoo, Y.D.; Sai Prasad, P.S.; Lim, H.; Byun, C.D.: Co-methanation of CO and CO2 on the NiX–Fe1−X/Al2O3 catalysts; effect of Fe contents. Korean J. Chem. Eng. 28(12), 2282–2286 (2011)

    Article  Google Scholar 

  36. Derekaya, F.; Arasan, N.; Güldür, Ç.: Development of NiFeSi mixed oxide catalysts For CO methanation. Chem. Pap. 76, 841–854 (2022)

    Article  Google Scholar 

  37. Jiméneza, V.; Sáncheza, P.; Panagiotopoulou, P.; Valverdea, J.L.; Romero, A.: Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts. App. Catal. A Gen. 390, 35–44 (2010)

    Article  Google Scholar 

  38. Variava, M.F.; Church, T.L.; Noorbehesht, N.; Harris, A.T.; Minett, A.I.: Carbon-supported gas-cleaning catalysts enable syn gas methanation at atmospheric pressure. Catal. Sci. Technol. 5, 515 (2015)

    Article  Google Scholar 

  39. Gonçalves, L.P.L.; Sousa, J.P.S.; Salomé, O.; Soares, G.P.; Bondarchuk, O.; Lebedev, O.I.; Kolen’ko, Y.V.; Pereira, M.F.R.: The role of surface properties in CO2 methanation over carbon-supported Ni catalysts and their promotion by Fe. Catal. Sci. Technol. 10, 7217 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

As the project team, we would like to thank Gazi University Scientific Research Unit for their financial support with the project numbered 18/2017-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiz Derekaya.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derekaya, F., Köprülü, A.B. & Kilinç, Y.S. Investigation of CO Methanation with Different Carbon-Supported Ni-, Fe-, and Co-Containing Catalysts. Arab J Sci Eng 48, 8989–9008 (2023). https://doi.org/10.1007/s13369-022-07594-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07594-8

Keywords

Navigation