Skip to main content
Log in

The Performance Analysis of Different Water Indices and Algorithms Using Sentinel-2 and Landsat-8 Images in Determining Water Surface: Demirkopru Dam Case Study

  • Research Article-earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the most appropriate algorithm and water index to determine the boundaries of the dam water surface using remote sensing (RS) techniques were investigated. Water surface boundaries of Demirkopru Dam were determined using Sentinel-2 L2A (MSI) and Landsat-8 (OLI) satellite images. Demirkopru Dam was chosen as the study area as it is suitable for floating photovoltaic (FPV) solar power plant installation. Normalized difference water index (NDWI) and modified NDWI indices were used to determine the water surface boundaries of the dam. Thirty-six classification results were obtained using K-means, maximum likelihood classification (MLC), and random forest (RF) algorithms. The best classification accuracies of the produced maps have been calculated as 80.3%, 73.1%, and 73.2% by RF, MLC, and K-means, respectively. In addition, the water coastlines determined by classifications were compared with the continuously operating reference station (CORS-TR) data in a local area by calculating the root-mean-square error (RMSE). Compared with the CORS-TR measurements of the dam coastline obtained from the images classified by the RF algorithm, the minimum RMSE values were calculated as 13.8 m and 10.1 m for Landsat and Sentinel images, respectively. While the minimum RMSE value for coastlines obtained with various layer stacks of Landsat images classified by the MLC algorithm is 36.7 m, it could not be calculated in Sentinel images due to poorer classification results. For the coastlines obtained from the images classified by the K-means algorithm, the minimum RMSE values were calculated as 14.5 m and 9.6 m for Landsat and Sentinel images, respectively. According to the comparisons based on classification accuracy and CORS-TR measurements, it is concluded that the RF algorithm performs better than others for the dam water surface. Moreover, it was determined that the NDWI presented better results when the water level was the lowest for Demirkopru Dam. Also, in this study, the MLC algorithm has better results in detecting water surfaces using Landsat images. It was concluded that the K-means algorithm is also very effective in water surface detection. In this study, various water extraction indices, algorithms and free Landsat and Sentinel images were used to extract the water surface in a selected reservoir for the FPV installation. This study guides a series of algorithms and indexes used to detect water surfaces. In addition, it has been shown that the use of RS techniques, which are more practical than classical approaches in determining water boundaries, will be more effective in planning and design in terms of engineers, investors and various organizations who will realize the FPV installation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gao, H.; Birkett, C.; Lettenmaier, D.P.: Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res. 48, 1–12 (2012). https://doi.org/10.1029/2012WR012063

    Article  Google Scholar 

  2. Chao Rodríguez, Y.; El Anjoumi, A.; Domínguez Gómez, J.A.; Rodríguez Pérez, D.; Rico, E.: Using Landsat image time series to study a small water body in Northern Spain. Environ. Monit. Assess. 186, 3511–3522 (2014). https://doi.org/10.1007/s10661-014-3634-8

    Article  Google Scholar 

  3. Kim, J.W.; Lu, Z.; Jones, J.W.; Shum, C.K.; Lee, H.; Jia, Y.: Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter. Remote Sens. Environ. 150, 66–81 (2014). https://doi.org/10.1016/j.rse.2014.03.031

    Article  Google Scholar 

  4. Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X.: Water bodies’ mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the swir band. Remote Sens. 8, 354 (2016). https://doi.org/10.3390/rs8040354

    Article  Google Scholar 

  5. D’Andrimont, R.; Defourny, P.: Monitoring African water bodies from twice-daily MODIS observation. GISci. Remote Sens. 55, 130–153 (2018). https://doi.org/10.1080/15481603.2017.1366677

    Article  Google Scholar 

  6. Huang, T.; Wang, S.; Yang, Q.; Li, J.: A GIS-based assessment of large-scale PV potential in China. Energy Procedia. 152, 1079–1084 (2018)

    Article  Google Scholar 

  7. Pipitone, C.; Maltese, A.; Dardanelli, G.; Brutto, M.L.; Loggia, G.L.: Monitoring water surface and level of a reservoir using different remote sensing approaches and comparison with dam displacements evaluated via GNSS. Remote Sens. 10, 1–24 (2018). https://doi.org/10.3390/rs10010071

    Article  Google Scholar 

  8. Al Garni, H.Z.; Awasthi, A.: Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Appl. Energy. 206, 1225–1240 (2017). https://doi.org/10.1016/j.apenergy.2017.10.024

    Article  Google Scholar 

  9. Pasalic, S.; Aksamovic, A.; Avdakovic, S.: Floating photovoltaic plants on artificial accumulations - Example of Jablanica Lake. In: 2018 IEEE International Energy Conference, Energycon 2018 (2018)

  10. Abid, M.; Abid, Z.; Sagin, J.; Murtaza, R.; Sarbassov, D.; Shabbir, M.: Prospects of floating photovoltaic technology and its implementation in Central and South Asian Countries. Int. J. Environ. Sci. Technol. 16, 1755–1762 (2019)

    Article  Google Scholar 

  11. Bekhouche, R.; Khoucha, F.; Benrabah, A.; Benbouzid, M.; Benmansour, K.: Electric power components and systems an improved active disturbance rejection model predictive power control with circulating current reduction for grid-connected modular multilevel converter an improved active disturbance rejection model predictive power. Electr. Power Compon. Syst. 1, 1–15 (2022). https://doi.org/10.1080/15325008.2022.2050448

    Article  Google Scholar 

  12. Basheer, A.A.: New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018)

    Article  Google Scholar 

  13. Basheer, A.A.; Ali, I.: Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality 30, 1088–1095 (2018)

    Article  Google Scholar 

  14. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Badjah, A.Y.: Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles. Photochem. Photobiol. 94, 935–941 (2018)

    Article  Google Scholar 

  15. Basheer, A.A.: Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30, 402–406 (2018)

    Article  Google Scholar 

  16. Ali, I.; Jain, C.K.: Groundwater contamination and health hazards by some of the most commonly used pesticides. Curr. Sci. 75, 1011–1014 (1998)

    Google Scholar 

  17. Sun, F.; Sun, W.; Chen, J.; Gong, P.: Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. Int. J. Remote Sens. 33, 6854–6875 (2012). https://doi.org/10.1080/01431161.2012.692829

    Article  Google Scholar 

  18. Li, W.; Qin, Y.; Sun, Y.; Huang, H.; Ling, F.; Tian, L.; Ding, Y.: Estimating the relationship between dam water level and surface water area for the Danjiangkou Reservoir using Landsat remote sensing images. Remote Sens. Lett. 7, 121–130 (2016). https://doi.org/10.1080/2150704X.2015.1117151

    Article  Google Scholar 

  19. Alba, M.; Giussani, A.; Roncoroni, F.; Scaioni, M.; Valgoi, P.: Geometric modelling of a large dam by terrestrial laser scanning. In: Proceedings of FIG Mondial Congress, Munich, Germany, Oct. pp 8–13 (2006)

  20. Canaz, S.; Karsli, F.; Guneroglu, A.; Dihkan, M.: Automatic boundary extraction of inland water bodies using LiDAR data. Ocean Coast. Manag. 118, 158–166 (2015). https://doi.org/10.1016/j.ocecoaman.2015.07.024

    Article  Google Scholar 

  21. Incekara, A.H.; Member, S.; Seker, D.Z.; Bayram, B.: Qualifying the LIDAR-derived intensity image as an infrared band in NDWI-based shoreline extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 5053–5062 (2018). https://doi.org/10.1109/JSTARS.2018.2875792

    Article  Google Scholar 

  22. Baselice, F.; Ferraioli, G.: Unsupervised coastal line extraction from SAR images. IEEE Geosci. Remote Sens. Lett. 10, 1350–1354 (2013). https://doi.org/10.1109/LGRS.2013.2241013

    Article  Google Scholar 

  23. Huang, W.; DeVries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L.: Automated extraction of surface water extent from Sentinel-1 data. Remote Sens. 10, 1–18 (2018). https://doi.org/10.3390/rs10050797

    Article  Google Scholar 

  24. Senel, G.; Dogru, A.O.; Goksel, C.: Exploring the potential of Landsat-8 OLI and Sentinel-2 MSI data for mapping and monitoring Enez Dalyan Lagoon. Desalin. Water Treat. 177, 330–337 (2020)

    Article  Google Scholar 

  25. Göksel, Ç.; Senel, G.; Doğru, A.: Determination of shoreline change along the Black Sea coast of Istanbul using remote sensing and GIS technology. Desalin. Water Treat. 177, 1 (2020)

    Google Scholar 

  26. Adediji, A.; Ajibade, L.T.: The change detection of major dams in Osun State, Nigeria using remote sensing (RS) and GIS techniques. J. Geog. 1, 110–115 (2008). https://doi.org/10.5897/JGRP.9000136

    Article  Google Scholar 

  27. Bhandari, A.K.; Kumar, A.; Singh, G.K.: Improved feature extraction scheme for satellite images using NDVI and NDWI technique based on DWT and SVD. Arab. J. Geosci. 8, 6949–6966 (2015). https://doi.org/10.1007/s12517-014-1714-2

    Article  Google Scholar 

  28. Moghaddam, M.H.R.; Sedighi, A.; Fayyazi, M.A.: Applying MNDWI index and linear directional mean analysis for morphological changes in the Zarriné-Rūd River. Arab. J. Geosci. 8, 8419–8428 (2015). https://doi.org/10.1007/s12517-015-1795-6

    Article  Google Scholar 

  29. Przyborski, M.; Szczechowski, B.; Szubiak, W.; Szulwic, J.; Widerski, T.: Photogrammetric development of the threshold water at the dam on the Vistula River in Wloclawek from unmanned aerial vehicles (UAV). In: SGEM2015 Conference Proceedings, pp. 18–24 (2015)

  30. Buffi, G.; Manciola, P.; Grassi, S.; Barberini, M.; Gambi, A.: Survey of the Ridracoli Dam: UAV–based photogrammetry and traditional topographic techniques in the inspection of vertical structures. Geomat. Nat. Hazards Risk. 8, 1562–1579 (2017). https://doi.org/10.1080/19475705.2017.1362039

    Article  Google Scholar 

  31. Frazier, P.S.; Page, K.J.: Water body detection and delineation with Landsat TM data. Photogramm. Eng. Remote Sens. 66, 1461–1467 (2000)

    Google Scholar 

  32. Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L.: Mapping of urban surface water bodies from sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 9, 1–19 (2017). https://doi.org/10.3390/rs9060596

    Article  Google Scholar 

  33. Arekhi, M.; Goksel, C.; Balik Sanli, F.; Senel, G.: Comparative evaluation of the spectral and spatial consistency of sentinel-2 and landsat-8 OLI data for Igneada Longos Forest. ISPRS Int. J. Geo-Info. 8, 56 (2019). https://doi.org/10.3390/ijgi8020056

    Article  Google Scholar 

  34. Fonseca, L.M.G.; Manjunath, B.S.: Registration techniques for multisensor remotely sensed imagery. Photogramm. Eng. Remote Sens. 62, 1049–1056 (1996)

    Google Scholar 

  35. Padró, J.C.; Muñoz, F.J.; Ávila, L.Á.; Pesquer, L.; Pons, X.: Radiometric correction of Landsat-8 and Sentinel-2A scenes using drone imagery in synergy with field spectroradiometry. Remote Sens. 10, 1687 (2018). https://doi.org/10.3390/rs10111687

    Article  Google Scholar 

  36. Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L.: Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 59, 185–198 (2005). https://doi.org/10.1016/j.isprsjprs.2005.02.002

    Article  Google Scholar 

  37. Tramutoli, V.; Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C.: Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: the case of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sens. Environ. 96, 409–426 (2005). https://doi.org/10.1016/j.rse.2005.04.006

    Article  Google Scholar 

  38. Kerr, J.T.; Ostrovsky, M.: From space to species: ecological applications for remote sensing. Trends Ecol. Evol. 18, 299–305 (2003). https://doi.org/10.1016/S0169-5347(03)00071-5

    Article  Google Scholar 

  39. Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M.: Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18, 306–314 (2003). https://doi.org/10.1016/S0169-5347(03)00070-3

    Article  Google Scholar 

  40. Hadi, S.J.; Shafri, H.Z.M.; Mahir, M.D.: Factors affecting the eco-environment identification through change detection analysis by using remote sensing and GIS: a case study of Tikrit. Iraq. Arab. J. Sci. Eng. 39, 395–405 (2014)

    Article  Google Scholar 

  41. Zheng, Q.A.; Klemas, V.: Determination of winter temperature patterns, fronts, and surface currents in the Yellow Sea and East China Sea from satellite imagery. Remote Sens. Environ. 12, 201–218 (1982). https://doi.org/10.1016/0034-4257(82)90053-0

    Article  Google Scholar 

  42. Turiel, A.; Solé, J.; Nieves, V.; Ballabrera-Poy, J.; García-Ladona, E.: Tracking oceanic currents by singularity analysis of Microwave Sea Surface Temperature images. Remote Sens. Environ. 112, 2246–2260 (2008). https://doi.org/10.1016/j.rse.2007.10.007

    Article  Google Scholar 

  43. Klemas, V.: Remote sensing of coastal and ocean currents: An overview. J. Coast. Res. 28, 576–586 (2012). https://doi.org/10.2112/JCOASTRES-D-11-00197.1

    Article  Google Scholar 

  44. Fu, P.; Rich, P.M.: A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 37, 25–35 (2002). https://doi.org/10.1016/S0168-1699(02)00115-1

    Article  Google Scholar 

  45. Kulkarni, A.V.; Bahuguna, I.M.; Rathore, B.P.; Singh, S.K.; Randhawa, S.S.; Sood, R.K.; Dhar, S.: Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Curr. Sci. 92, 69–74 (2007)

    Google Scholar 

  46. Berry, P.A.M.; Garlick, J.D.; Freeman, J.A.; Mathers, E.L.: Global inland water monitoring from multi-mission altimetry. Geophys. Res. Lett. 32, L16401 (2005). https://doi.org/10.1029/2005GL022814

    Article  Google Scholar 

  47. Ghatasheh, N.A.; Abu-Faraj, M.M.; Faris, H.: Dead sea water level and surface area monitoring using spatial data extraction from remote sensing images. Int. Rev. Comput. Softw. 8, 2892–2897 (2013)

    Google Scholar 

  48. Esmail, M.; Mahmod, W.E.; Fath, H.: Assessment and prediction of shoreline change using multi-temporal satellite images and statistics: Case study of Damietta coast. Egypt. Appl. Ocean Res. 82, 274–282 (2019). https://doi.org/10.1016/j.apor.2018.11.009

    Article  Google Scholar 

  49. Yang, X.; Qin, Q.; Grussenmeyer, P.; Koehl, M.: Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sens. Environ. 219, 259–270 (2018). https://doi.org/10.1016/j.rse.2018.09.016

    Article  Google Scholar 

  50. Jiang, W.; He, G.; Pang, Z.; Guo, H.; Long, T.; Ni, Y.: Surface water map of China for 2015 (SWMC-2015) derived from Landsat 8 satellite imagery. Remote Sens. Lett. 11, 265–273 (2020). https://doi.org/10.1080/2150704X.2019.1708501

    Article  Google Scholar 

  51. Yang, X.; Chen, Y.; Wang, J.: Combined use of Sentinel-2 and Landsat 8 to monitor water surface area dynamics using Google Earth Engine. Remote Sens. Lett. 11, 687–696 (2020). https://doi.org/10.1080/2150704X.2020.1757780

    Article  Google Scholar 

  52. Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006). https://doi.org/10.1080/01431160600589179

    Article  Google Scholar 

  53. McFeeters: The use of the normalized difference water IndexMcFeeters. Int. J. Remote Sens. 17, 1425–1432 (1996). https://doi.org/10.1080/01431169608948714

  54. Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R.: Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 140, 23–35 (2014). https://doi.org/10.1016/j.rse.2013.08.029

    Article  Google Scholar 

  55. Guo, Q.; Pu, R.; Li, J.; Cheng, J.: A weighted normalized difference water index for water extraction using landsat imagery. Int. J. Remote Sens. 38, 5430–5445 (2017). https://doi.org/10.1080/01431161.2017.1341667

    Article  Google Scholar 

  56. Pena-Regueiro, J.; Sebastiá-Frasquet, M.T.; Estornell, J.; Aguilar-Maldonado, J.A.: Sentinel-2 application to the surface characterization of small water bodies in Wetlands. Water (Switzerland). 12, 1487 (2020). https://doi.org/10.3390/w12051487

    Article  Google Scholar 

  57. Whiteside, T.G.; Boggs, G.S.; Maier, S.W.: Comparing object-based and pixel-based classifications for mapping savannas. Int. J. Appl. Earth Obs. Geoinf. 13, 884–893 (2011). https://doi.org/10.1016/j.jag.2011.06.008

    Article  Google Scholar 

  58. Zhang, T.; Yang, X.; Hu, S.; Su, F.: Extraction of coastline in aquaculture coast from multispectral remote sensing images: object-based region growing integrating edge detection. Remote Sens. 5, 4470–4487 (2013). https://doi.org/10.3390/rs5094470

    Article  Google Scholar 

  59. Yang, X.; Chen, L.: Evaluation of automated urban surface water extraction from Sentinel-2A imagery using different water indices. J. Appl. Remote Sens. 11, 1–11 (2017). https://doi.org/10.1117/1.JRS.11.026016

    Article  Google Scholar 

  60. Pardo-Pascual, J.E.; Amonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vazquez, J.: Automatic extraction of shorelines from landsat TM and ETM+ multi-temporal images with SubPixel precision. Remote Sens. Environ. 123, 1–11 (2012). https://doi.org/10.1016/j.rse.2012.02.024.The

    Article  Google Scholar 

  61. Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Lin, P.; Gong, K.; Ziegler, A.D.; Chen, A.; Gong, P.; Chen, J.; Hu, G.; Chen, Y.; Wang, S.; Wu, Q.; Huang, K.; Estes, L.; Zeng, Z.: High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 3, 564–570 (2020). https://doi.org/10.1038/s41893-020-0521-x

    Article  Google Scholar 

  62. Lv, Y.; Gao, W.; Yang, C.; Fang, Z.: A novel spatial–spectral extraction method for subpixel surface water. Int. J. Remote Sens. 41, 2477–2499 (2020). https://doi.org/10.1080/01431161.2019.1693073

    Article  Google Scholar 

  63. Kaplan, G.; Avdan, U.: Object-based water body extraction model using Sentinel-2 satellite imagery. Eur. J. Remote Sens. 50, 137–143 (2017). https://doi.org/10.1080/22797254.2017.1297540

    Article  Google Scholar 

  64. Kaplan, G.; Avdan, U.: Water extraction technique in mountainous areas from satellite images. J. Appl. Remote Sens. 11, 46002 (2017)

    Article  Google Scholar 

  65. Fu, H.; Deng, F.; Shao, Y.; Liu, Y.; Zhang, J.: Road centreline extraction of high-resolution remote sensing image with improved beamlet transform and K-means clustering. Arab. J. Sci. Eng. 46, 4153–4162 (2021)

    Article  Google Scholar 

  66. Xiao, Y.; Zhao, W.; Zhu, L.: A study on information extraction of water body using Bandl and Band7 of TM imagery. Sci. Surv. Mapp. 35, 1 (2010)

    Google Scholar 

  67. Hossen, H.; Ibrahim, M.G.; Mahmod, W.E.; Negm, A.; Nadaoka, K.; Saavedra, O.: Forecasting future changes in Manzala Lake surface area by considering variations in land use and land cover using remote sensing approach. Arab. J. Geosci. 11, 1–17 (2018). https://doi.org/10.1007/s12517-018-3416-7

    Article  Google Scholar 

  68. Mansaray, L.R.; Wang, F.; Huang, J.; Yang, L.: Accuracies of support vector machine (SVM) and random forest (RF) in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets. Geocarto Int. 35, 1088–1108 (2019). https://doi.org/10.1080/10106049.2019.1568586

    Article  Google Scholar 

  69. Wang, H.; Yang, B.; Jiang, J.; Zhou, J.: Real-time extraction of water surface boundary using shipborne radar. Int. J. Remote Sens. 41, 2739–2758 (2020). https://doi.org/10.1080/01431161.2019.1697007

    Article  Google Scholar 

  70. Torun, A.T.; Gündüz, H.İ: Comparison of different classification algorithms for the detection of changes on water bodies. Karakaya Dam Lake. Turkish J. Geosci. 1, 26–33 (2020)

    Google Scholar 

  71. Reis, S.; Yilmaz, H.M.: Temporal monitoring of water level changes in Seyfe Lake using remote sensing. Hydrol. Process. 22, 4448–4454 (2008). https://doi.org/10.1002/hyp.7047

    Article  Google Scholar 

  72. Qiao, C.; Luo, J.; Sheng, Y.; Shen, Z.; Zhu, Z.; Ming, D.: An adaptive water extraction method from remote sensing image based on NDWI. J. Indian Soc. Remote Sens. 40, 421–433 (2012). https://doi.org/10.1007/s12524-011-0162-7

    Article  Google Scholar 

  73. Wang, Y.; Li, Z.; Zeng, C.; Xia, G.; Shen, H.: Extracting urban water by combining deep learning and google earth engine. IEEE J Sel. Top. Appl. EARTH Obs. Remote Sens. 13, 769–782 (2020). https://doi.org/10.1109/JSTARS.2020.2971783

    Article  Google Scholar 

  74. Liu, C.; Shi, J.; Liu, X.; Shi, Z.; Zhu, J.: Subpixel mapping of surfacewater in the Tibetan Plateau with MODIS data. Remote Sens. 12, 1–20 (2020). https://doi.org/10.3390/rs12071154

    Article  Google Scholar 

  75. Deng, Z.; Sun, Y.; Zhang, K.; Qiu, Q.; Sun, W.: A water identification method basing on grayscale Landsat 8 OLI images. Geocarto Int. 35, 700–710 (2020). https://doi.org/10.1080/10106049.2018.1552324

    Article  Google Scholar 

  76. Sreekanth, P.D.; Krishnan, P.; Rao, N.H.; Soam, S.K.; Srinivasarao, C.: Mapping surface-water area using time series landsat imagery on Google Earth Engine: A case study of Telangana, India. Curr. Sci. 120, 1491–1499 (2021). https://doi.org/10.18520/cs/v120/i9/1491-1499

    Article  Google Scholar 

  77. Cordeiro, M.C.R.; Martinez, J.M.; Peña-Luque, S.: Automatic water detection from multi-dimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sens. Environ. 253, 1 (2021). https://doi.org/10.1016/j.rse.2020.112209

    Article  Google Scholar 

  78. Li, J.; Ma, R.; Cao, Z.; Xue, K.; Xiong, J.; Hu, M.; Feng, X.: Satellite detection of surface water extent: A review of methodology. Water (Switzerland). 14, 1–18 (2022). https://doi.org/10.3390/w14071148

    Article  Google Scholar 

  79. Tang, H.; Lu, S.; Baig, M.H.A.; Li, M.; Fang, C.; Wang, Y.: Large-scale surface water mapping based on landsat and sentinel-1 images. Water (Switzerland). 14, 1 (2022). https://doi.org/10.3390/w14091454

    Article  Google Scholar 

  80. Dehkordi, A.T.; Javad, M.; Zoej, V.; Ghasemi, H.; Ghaderpour, E.: A new clustering method to generate training samples for supervised monitoring of long-term water surface dynamics using landsat data through google earth engine. Sustainability (2022)

  81. Mittal, D.; Saxena, B.K.; Rao, K.V.S.: Floating solar photovoltaic systems: an overview and their feasibility at Kota in Rajasthan. In: 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–7. IEEE (2017)

  82. Cazzaniga, R.; Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.M.: Integration of PV floating with hydroelectric power plants. Heliyon. 5, e01918 (2019). https://doi.org/10.1016/j.heliyon.2019.e01918

    Article  Google Scholar 

  83. Rodrigues, I.S.; Ramalho, G.L.B.; Medeiros, P.H.A.: Potential of floating photovoltaic plant in a tropical reservoir in Brazil. J. Environ. Plan. Manag. 63, 2334–2356 (2020). https://doi.org/10.1080/09640568.2020.1719824

    Article  Google Scholar 

  84. Nagananthini, R.; Nagavinothini, R.: Investigation on floating photovoltaic covering system in rural Indian reservoir to minimize evaporation loss. Int. J. Sustain. Energy. 40, 1–25 (2021). https://doi.org/10.1080/14786451.2020.1870975

    Article  Google Scholar 

  85. Ates, A.M.; Yilmaz, O.S.; Gülgen, F.: Using remote sensing to calculate fl oating photovoltaic technical potential of a dam’s surface. Sustain. Energy Technol. Assessments. 41, 100799 (2020). https://doi.org/10.1016/j.seta.2020.100799

    Article  Google Scholar 

  86. Rauf, H.; Gull, M.S.; Arshad, N.: Integrating floating solar PV with hydroelectric power plant: analysis of Ghazi Barotha reservoir in Pakistan. Energy Procedia. 158, 816–821 (2019). https://doi.org/10.1016/J.EGYPRO.2019.01.214

    Article  Google Scholar 

  87. Öztürk, M.; Özözen, G.; Minareci, O.; Minareci, E.: Determination of heavy metals in of fishes, water and sediment from the Demirköprü Dam Lake (Turkey). J. Appl. Biol. Sci. 2, 99–104 (2008)

    Google Scholar 

  88. Kokpinar, M.A.; Kumcu, S.Y.; Altan-Sakarya, A.B.; Gogus, M.: Reservoir sedimentation in the Demirköprü Dam, Turkey. In: Proceedings of the International Conference on Fluvial Hydraulics, River Flow, pp. 1125–1130 (2010)

  89. Adler-Golden, S.; Berk, A.; Bernstein, L.S.; Richtsmeier, S.; Acharya, P.K.; Matthew, M.W.; Anderson, G.P.; Allred, C.L.; Jeong, L.S.; Chetwynd, J.H.: FLAASH, a MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations. Summ. Seventh JPL Airborne Earth Sci. Work. 1, 9–14 (1998)

    Google Scholar 

  90. Rizos, C.: Alternatives to current GPS-RTK services and some implications for CORS infrastructure and operations. GPS Solut. 11, 151–158 (2007). https://doi.org/10.1007/s10291-007-0056-x

    Article  Google Scholar 

  91. Eren, K.; Uzel, T.; Gulal, E.; Yildirim, O.; Cingoz, A.: Results from a comprehensive Global Navigation Satellite System test in the CORS-TR network: Case study. J. Surv. Eng. 135, 10–18 (2009). https://doi.org/10.1061/(ASCE)0733-9453(2009)135:1(10)

    Article  Google Scholar 

  92. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  93. Liaw, A.; Wiener, M.: Classification and regression by randomForest. R News. 2, 18–22 (2002)

    Google Scholar 

  94. Horning, N.: Random Forests: An algorithm for image classification and generation of continuous fields data sets. In: Proceedings of the International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Osaka, Japan (2010)

  95. Paola, J.D.; Schowengerdt, R.A.: A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Trans. Geosci. Remote Sens. 33, 981–996 (1995). https://doi.org/10.1109/36.406684

    Article  Google Scholar 

  96. Otukei, J.R.; Blaschke, T.: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 12, S27–S31 (2010). https://doi.org/10.1016/j.jag.2009.11.002

    Article  Google Scholar 

  97. Lv, Z.; Hu, Y.; Zhong, H.; Wu, J.; Li, B.; Zhao, H.: Parallel k-means clustering of remote sensing images based on mapreduce. In: International Conference on Web Information Systems and Mining, pp. 162–170. Springer (2010)

  98. Al Bashish, D.; Braik, M.; Bani-Ahmad, S.: Detection and classification of leaf diseases using K-means-based segmentation and Neural-networks-based classification. Inf. Technol. J. 10, 267–275 (2011). https://doi.org/10.3923/itj.2011.267.275

    Article  Google Scholar 

  99. Ji, L.; Zhang, L.; Wylie, B.: Problems of dynamic NDWI threshold and objectives of the study the NDWI data derived from landsat MSS, TM, and ETM. Photogramm. Eng. Remote Sens. 75, 1307–1317 (2009). https://doi.org/10.14358/PERS.75.11.1307

    Article  Google Scholar 

  100. Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y.: A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 130, 277–293 (2017)

    Article  Google Scholar 

  101. Holben, B.N.: Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 7, 1417–1434 (1986)

    Article  Google Scholar 

  102. Sukarso, A.P.; Kim, K.N.: Cooling effect on the floating solar PV: performance and economic analysis on the case of west Java province in Indonesia. Energies 13, 2126 (2020). https://doi.org/10.3390/en13092126

    Article  Google Scholar 

  103. Singh, P.; Diwakar, M.; Shankar, A.; Shree, R.; Kumar, M.: A review on SAR image and its despeckling. Arch. Comput. Methods Eng. 1, 1–21 (2021). https://doi.org/10.1007/s11831-021-09548-z

    Article  Google Scholar 

  104. Cánovas-García, F.; Alonso-Sarría, F.; Gomariz-Castillo, F.; Oñate-Valdivieso, F.: Modification of the random forest algorithm to avoid statistical dependence problems when classifying remote sensing imagery. Comput. Geosci. 103, 1–11 (2017). https://doi.org/10.14358/PERS.83.10.737

    Article  Google Scholar 

  105. Jin, Y.; Liu, X.; Chen, Y.; Liang, X.: Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: a case study of central Shandong. Int. J. Remote Sens. 39, 8703–8723 (2018). https://doi.org/10.1080/01431161.2018.1490976

    Article  Google Scholar 

  106. Kelley, L.C.; Pitcher, L.; Bacon, C.: Using Google Earth engine to map complex shade-grown coffee landscapes in Northern Nicaragua. Remote Sens. 10, 952 (2018). https://doi.org/10.3390/rs10060952

    Article  Google Scholar 

  107. Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S.: Exploring Google earth engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 5, 17 (2017). https://doi.org/10.3389/feart.2017.00017Exploring

    Article  Google Scholar 

  108. Gudelj, M.; Gašparović, M.; Zrinjski, M.: Accuracy analysis of the inland waters detection. In: SGEM Vienna Green 2018 (2018)

  109. Bijeesh, T.V.; Narasimhamurthy, K.N.: Surface water detection and delineation using remote sensing images: a review of methods and algorithms. Sustain. Water Resour. Manag. 6, 1–23 (2020). https://doi.org/10.1007/s40899-020-00425-4

    Article  Google Scholar 

  110. Li, J.; Ma, R.; Cao, Z.Z.; Xue, K.; Xiong, J.; Hu, M.; Feng, X.; Tang, H.; Lu, S.; Baig, M.H.A.; Li, M.; Fang, C.; Wang, Y.; Song, S.; Cao, Z.Z.; Wu, Z.; Chuai, X.; Chai, X.R.; Li, M.; Wang, G.W.: Spatial and temporal dynamics of surface water in China from the 1980s to 2015 based on remote sensing monitoring. Water (Switzerland). 14, 251–262 (2022). https://doi.org/10.3390/w14091454

    Article  Google Scholar 

  111. Sahu, A.; Yadav, N.; Sudhakar, K.: Floating photovoltaic power plant: a review. Renew. Sustain. Energy Rev. 66, 815–824 (2016). https://doi.org/10.1016/j.rser.2016.08.051

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. It was prepared from a part of the first author's doctoral dissertation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Salih Yilmaz.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, O.S., Gulgen, F., Balik Sanli, F. et al. The Performance Analysis of Different Water Indices and Algorithms Using Sentinel-2 and Landsat-8 Images in Determining Water Surface: Demirkopru Dam Case Study. Arab J Sci Eng 48, 7883–7903 (2023). https://doi.org/10.1007/s13369-022-07583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07583-x

Keywords

Navigation