Skip to main content
Log in

Performance Evaluation of a Cascading Adsorption Cooling System Using a Robust Numerical Model

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper adopts an investigation of a novel cascading adsorption cooling system. The system has two high-temperature zeolite-water beds topping a silica-gel/water bed using the heat recovery technique. A parametric study is carried out on the proposed method using a robust numerical model that shows excellent validation compared to the data reported in the literature. The system is assessed using two performance indices: the specific cooling power (SCP) and the coefficient of performance (COP). The results indicate that the proposed system has a COP value approaching 1.6, and its SCP can reach 170 W/kg. It is observed that increasing the half-cycle time of zeolite beds from 10 to 120 min reduces the SCP by 80% while it increases the COP by about 53%. In this regard, it is noticed that a half-cycle time of 60 min is recommended for optimal system performance. When the heating source temperature increases (110–190 °C), a rise of 120% is obtained in the SPC and COP enhances by about 35%. Above this temperature level, the increase in the SPC becomes unnoticeable, and conversely, the COP slightly drops. Moreover, when the bed's cooling-fluid inlet temperature to the system rises from 10 to 40 °C, there is a forty percent decline in SCP with a thirty percent drop in the COP. In this regard, it is preferable to keep the bed's cooling-fluid inlet temperature below 30 °C for better performance. Also, the mass flow rate of the cooling fluid shouldn't be less than 0.1 kg/s. An increase in the inlet temperature of chilled water (5–25 °C) leads to increases in the SCP and COP by 200 and 65%, respectively. Moreover, the SCP and COP decline by 70 and 30% when the total zeolite mass rises from 2 to 30 kg. For better system performance, the ratio of the silica-gel mass to the total zeolite mass in the system should range from 0.45 to 0.55.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(A\) :

Heat transfer area, m2

\(\mathrm{AR}\) :

Adsorbent mass ratio, kg/kg

\({c}_{p}\) :

Specific heat, kJ/kg-K

\({D}_{so}\) :

Kinetic constant, m2/s

\({E}_{a}\) :

Activation energy, J/kg

\({h}_{fg}\) :

Latent heat of vaporization, kJ/kg

\(m\) :

Mass, kg, or heterogeneity factor, –

\(\dot{m}\) :

Mass flow rate, kg/s

\(n\) :

Interaction factor, –

\(P\) :

Pressure, kPa

\({P}_{s}\) :

Saturation pressure, kPa

\(q\) :

Instantaneous water vapor uptake, kg/kg

\({q}_{o}\) :

Equilibrium water vapor uptake, kg/kg

\({Q}_{st}\) :

Isosteric heat of adsorption, kJ/kg

\(\dot{Q}\) :

Heat transfer rate, kW

\(R\) :

Gas constant, kJ/kg-K

\(\overline{R }\) :

Universal gas constant, kJ/kmol-K

\({\overline{R} }_{p}\) :

Particle average radius, mm

\(t\) :

Time, s or min

\(T\) :

Temperature, °C or K

\(TC\) :

Thermal capacity, kJ/K

\(U\) :

Overall heat transfer coefficient, kW/m2-K

\(UA\) :

Overall heat transfer coefficient-area product, kW/K

\(z\) :

Compressibility factor,

α :

Dimensionless parameter defined by Eq. (3)

\(\beta\) :

Loading factor, –

\(\varphi\) :

Parameter defined by Eq. (5), kJ/kg

\({\varphi }_{m}\) :

Minimum potential energy, kJ/kg

\({\varphi }^{*}\) :

Parameter appears in Eq. (2), kPa

\({\eta }_{\mathrm{comb}}\) :

Combustion efficiency, –

\(\rho\) :

Density, kg/m3

\(\theta\) :

Floating variable,

\(1, 2,\dots\) :

State points

\(\mathrm{I},\mathrm{ II},\mathrm{III}\) :

Related to bed number

\(\mathrm{ads}\) :

Related adsorption process

\(\mathrm{b}\) :

Bed

\(\mathrm{cf}\) :

Cooling fluid

\(\mathrm{chw}\) :

Chilled water

\(\mathrm{cond}\) :

Condenser

\(\mathrm{cw}\) :

Cooling water

\(\mathrm{des}\) :

Related to desorption process

\(\mathrm{evap}\) :

Evaporator

\(\mathrm{ew}\) :

Evaporator water

\(\mathrm{hcycle}\) :

Half cycle

\(\mathrm{hf}\) :

Heating fluid

\(\mathrm{htf}\) :

Heat transfer fluid

\(\mathrm{in}\) :

Related to inlet flow stream

\(\mathrm{max}\) :

Maximum

\(\mathrm{out}\) :

Related to outlet flow stream

\(\mathrm{sg}\) :

Silica-gel

\(\mathrm{sgwb}\) :

Silica-gel/water bed

\(\mathrm{wl}\) :

Water liquid

\(\mathrm{wv}\) :

Water vapor

\(\mathrm{z}\) :

Zeolite

\(\mathrm{zwb}\) :

Zeolite/water bed

\(\mathrm{COP}\) :

Coefficient of performance, –

HR:

Heat recovery

HTF:

Heat transfer fluid

MR:

Mass recovery

PC:

Pre-cooling

PH:

Pre-heating

\(SCP\) :

Specific cooling power, W/kg

SGW:

Silica-gel/water

ZW:

Zeolite/water

\(\mathrm{COP}\) :

Coefficient of performance, –

HR:

Heat recovery

HTF:

Heat transfer fluid

MR:

Mass recovery

PC:

Pre-cooling

PH:

Pre-heating

\(SCP\) :

Specific cooling power, W/kg

SGW:

Silica-gel/water

ZW:

Zeolite/water

References

  1. Sur, A.; Das, R.K.: Review on solar adsorption refrigeration cycle. Int. J. Mech. Eng. Technol. (IJMET) 6340, 190–226 (2010)

    Google Scholar 

  2. Afzal, A.; Soudagar, MEM.; Belhocine, A.; Kareemullah, M.; Hossain, N.; Alshahrani, S., et al. Thermal performance of compression ignition engine using high content biodiesels: A comparative study with diesel fuel. Sustainability, 13, Page 7688 2021;13:7688 (2021). https://doi.org/10.3390/SU13147688.

  3. Vasiliev, L.L.; Kanonchik, L.E.; Antuh, A.A.; Kulakov, A.G.: NaX zeolite, carbon fibre and CaCl2 ammonia reactors for heat pumps and refrigerators. Adsorption 2, 311–316 (1996). https://doi.org/10.1007/BF00879546

    Article  Google Scholar 

  4. Wang, R.; Wang, L,; Wu, J: Adsorption Refrigeration Technology: Theory and Application. vol. 9781118197. New York: Wiley (2014). https://doi.org/10.1002/9781118197448.

  5. Habib, K.; Saha, B.B.; Chakraborty, A.; Koyama, S.; Srinivasan, K.: Performance evaluation of combined adsorption refrigeration cycles. Int. J. Refrig 34, 129–137 (2011). https://doi.org/10.1016/j.ijrefrig.2010.09.005

    Article  Google Scholar 

  6. Wang, R.Z.; Oliveira, R.G.: Adsorption refrigeration-An efficient way to make good use of waste heat and solar energy. Prog. Energy Combust. Sci. 32, 424–458 (2006). https://doi.org/10.1016/j.pecs.2006.01.002

    Article  Google Scholar 

  7. Li, C.; Wang, R.Z.; Wang, L.W.; Li, T.X.; Chen, Y.: Experimental study on an adsorption icemaker driven by parabolic trough solar collector. Renew. Energy 57, 223–233 (2013). https://doi.org/10.1016/j.renene.2013.01.040

    Article  Google Scholar 

  8. Younes, M.M.; El-Sharkawy, I.I.; Kabeel, A.E.; Saha, B.B.: A review on adsorbent-adsorbate pairs for cooling applications. Appl. Therm. Eng. 114, 394–414 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.138

    Article  Google Scholar 

  9. Alsaman, A.S.; Askalany, A.A.; Harby, K.; Ahmed, M.S.: A state of the art of hybrid adsorption desalination-cooling systems. Renew. Sustain. Energy Rev. 58, 692–703 (2016). https://doi.org/10.1016/j.rser.2015.12.266

    Article  Google Scholar 

  10. Demir, H.; Mobedi, M.; Ülkü, S.: A review on adsorption heat pump: Problems and solutions. Renew. Sustain. Energy Rev. 12, 2381–2403 (2008). https://doi.org/10.1016/j.rser.2007.06.005

    Article  Google Scholar 

  11. Wang, R.Z.: Performance improvement of adsorption cooling by heat and mass recovery operation. Int. J. Refrig 24, 602–611 (2001). https://doi.org/10.1016/S0140-7007(01)00004-4

    Article  Google Scholar 

  12. Wolak, E.: The cooling effect by adsorption-desorption cycles. E3S Web of Conferences;14:01052 (2017). https://doi.org/10.1051/e3sconf/20171401052.

  13. Akahira, A.; Alam, K.C.A.; Hamamoto, Y.; Akisawa, A.; Kashiwagi, T.: Mass recovery adsorption refrigeration cycle—Improving cooling capicity. Int. J. Refrig 27, 225–234 (2004). https://doi.org/10.1016/j.ijrefrig.2003.10.004

    Article  Google Scholar 

  14. Shelton, S.H.; Wepfer, W.J.; Shelton, S.H.: Ramp Wave Analysis of the Solid/Vapor Heat Pump. J. Energy Resources Technol. Trans. ASME 112, 69–78 (1990). https://doi.org/10.1115/1.2905715

    Article  Google Scholar 

  15. Critoph, R.E.: Forced convection enhancement of adsorption cycles. Heat Recovery Syst. CHP 14, 343–350 (1994). https://doi.org/10.1016/0890-4332(94)90038-8

    Article  Google Scholar 

  16. Choudhury, B.; Saha, B.B.; Chatterjee, P.K.; Sarkar, J.P.: An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling. Appl. Energy 104, 554–567 (2013). https://doi.org/10.1016/j.apenergy.2012.11.042

    Article  Google Scholar 

  17. Liu, Y.; Leong, K.C.: Numerical study of a novel cascading adsorption cycle. Int. J. Refrig 29, 250–259 (2006). https://doi.org/10.1016/j.ijrefrig.2005.05.008

    Article  Google Scholar 

  18. Douss, N.; Meunier, F.E.; Sun, L.M.: Predictive model and experimental results for a two-adsorber solid adsorption heat pump. Ind. Eng. Chem. Res. 27, 310–316 (1988). https://doi.org/10.1021/ie00074a017

    Article  Google Scholar 

  19. Abbaz, D.; Chaker, A.; Bourouis, M.: Performance analysis of a cascading adsorption cycle powered by high-temperature heat sources for low-temperature cooling in hot climates. J. Thermal Sci. Eng. Appl. 12 (2020). https://doi.org/10.1115/1.4046606.

  20. Sah, R.P.; Choudhury, B.; Das, R.K.: A review on low grade heat powered adsorption cooling systems for ice production. Renew. Sustain. Energy Rev. 62, 109–120 (2016). https://doi.org/10.1016/j.rser.2016.04.036

    Article  Google Scholar 

  21. Fernandes, M.S.; Brites, G.J.V.N.; Costa, J.J.; Gaspar, A.R.; Costa, V.A.F.: Review and future trends of solar adsorption refrigeration systems. Renew. Sustain. Energy Rev. 39, 102–123 (2014). https://doi.org/10.1016/j.rser.2014.07.081

    Article  Google Scholar 

  22. Uyun, A.S.; Miyazaki, T.; Ueda, Y.; Akisawa, A.: High performance cascading adsorption refrigeration cycle with internal heat recovery driven by a low grade heat source temperature. Energies 2, 1170–1191 (2009). https://doi.org/10.3390/en20401170

    Article  Google Scholar 

  23. Dieng, A.O.; Wang, R.Z.: Literature review on solar adsorption technologies for ice-making and air-conditioning purposes and recent developments in solar technology. Renew. Sustain. Energy Rev. 5, 313–342 (2000). https://doi.org/10.1016/S1364-0321(01)00004-1

    Article  Google Scholar 

  24. High temperature thermal fluids | Heat transfer fluids | HTFs n.d. https://globalhtf.com/heat-transfer-fluids/high-temperature-fluid/ (Accessed March 31, 2021).

  25. Kayal, S.; Baichuan, S.; Saha, B.B.: Adsorption characteristics of AQSOA zeolites and water for adsorption chillers. Int. J. Heat Mass Transf. 92, 1120–1127 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.060

    Article  Google Scholar 

  26. Chakraborty, A.; Sun, B.: An adsorption isotherm equation for multi-types adsorption with thermodynamic correctness. Appl. Therm. Eng. 72, 190–199 (2014). https://doi.org/10.1016/j.applthermaleng.2014.04.024

    Article  Google Scholar 

  27. Zhang, L.Z.; Wang, L.: Performance estimation of an adsorption cooling system for automobile waste heat recovery. Appl. Therm. Eng. 17, 1127–1139 (1997). https://doi.org/10.1016/s1359-4311(97)00039-2

    Article  Google Scholar 

  28. Youssef, P.G.; Mahmoud, S.M.; AL-Dadah, R.K.: Performance analysis of four bed adsorption water desalination/refrigeration system, comparison of AQSOA-Z02 to silica-gel. Desalination, 375:100–107 (2015). https://doi.org/10.1016/j.desal.2015.08.002.

  29. Saha, B.B.; Boelman, E.C.; Kashiwagi, T.: Computer simulation of a silica gel-water adsorption refrigeration cycle - the influence of operating conditions on cooling output and COP. ASHRAE Trans. 101, 348–357 (1995)

    Google Scholar 

  30. Alahmer, A.; Wang, X.; Alam, K.C.A.: Dynamic and economic investigation of a solar thermal-driven two-bed adsorption chiller under Perth climatic conditions. Energies 2020;13. https://doi.org/10.3390/en13041005

  31. Di Palo, M.; Sabatelli, V.; Buzzi, F.; Gabbrielli, R.: Experimental and numerical assessment of a novel all-in-one adsorption thermal storage with zeolite for thermal solar applications. Appl. Sci. (Switzerland) 10, 1–17 (2020). https://doi.org/10.3390/app10238517

    Article  Google Scholar 

  32. Glaznev, I.; Ovoshchnikov, D.; Aristov, Y.: Effect of residual gas on water adsorption dynamics under typical conditions of an adsorption chiller. Heat Transfer Eng. 31, 924–930 (2010). https://doi.org/10.1080/01457631003604335

    Article  Google Scholar 

  33. Sah, R.P.; Choudhury, B.; Das, R.K.: Study of a two-bed silica gel–water adsorption chiller: performance analysis. Int. J. Sustain. Energ. 37, 30–46 (2018). https://doi.org/10.1080/14786451.2016.1173696

    Article  Google Scholar 

  34. Najmi, W.M.W.A.; Arhosazani, A.M.: Comparison of combustion performance between natural gas and medium fuel oil at different firing settings for industrial boilers. In: Proceedings of the International Conference On Mechanical And Manufacturing Engineering (ICME), Malaysia: 2006, p. 1–10.

  35. Meunier, F.; Poyelle, F.; LeVan, M.D.: Second-law analysis of absorptive refrigeration cycles: The role of thermal coupling entropy production. Appl. Therm. Eng. 17, 43–55 (1997). https://doi.org/10.1016/1359-4311(96)00019-1

    Article  Google Scholar 

  36. Poyelle, F.; Guilleminot, J.J.; Meunier, F.: Experimental tests and predictive model of an adsorptive air conditioning unit. Ind. Eng. Chem. Res. 38, 298–309 (1999). https://doi.org/10.1021/ie9802008

    Article  Google Scholar 

  37. Szarzynski, S.; Feng, Y.; Pons, M.: Study of different internal vapour transports for adsorption cycles with heat regeneration. Int. J. Refrig 20, 390–401 (1997). https://doi.org/10.1016/S0140-7007(97)00031-5

    Article  Google Scholar 

  38. Douss, N.; Meunier, F.: Experimental study of cascading adsorption cycles. Chem. Eng. Sci. 44, 225–235 (1989). https://doi.org/10.1016/0009-2509(89)85060-2

    Article  Google Scholar 

  39. Hamamoto, Y.; Amanul Alam, K.C.; Akisawa, A.; Kashiwagi, T.: Performance evaluation of a two-stage adsorption refrigeration cycle with different mass ratio. Int. J. Refrig 28, 344–352 (2005). https://doi.org/10.1016/j.ijrefrig.2004.09.005

    Article  Google Scholar 

  40. Khan, M.Z.I.; Alam, K.C.A.; Saha, B.B.; Hamamoto, Y.; Akisawa, A.; Kashiwagi, T.: Parametric study of a two-stage adsorption chiller using re-heat - The effect of overall thermal conductance and adsorbent mass on system performance. Int. J. Therm. Sci. 45, 511–519 (2006). https://doi.org/10.1016/j.ijthermalsci.2005.08.003

    Article  Google Scholar 

  41. Tatlier, M.; Erdem-Şenatalar, A.: Polymeric heat exchangers to increase the COP values of adsorption heat pumps utilizing zeolite coatings. Appl. Therm. Eng. 24, 69–78 (2004). https://doi.org/10.1016/S1359-4311(03)00241-2

    Article  Google Scholar 

  42. Bonaccorsi, L.; Freni, A.; Proverbio, E.; Restuccia, G.; Russo, F.: Zeolite coated copper foams for heat pumping applications. Microporous Mesoporous Mater. 91, 7–14 (2006). https://doi.org/10.1016/j.micromeso.2005.10.045

    Article  Google Scholar 

  43. Mande, S.; Ghosh, P.; Kishore, V.: Development of an advanced solar–hybrid adsorption cooling system for decentralized storage of agricultural products in India. Deutsche Forschungsanstalt Luft-und Raumfahrt eV, Germany, pp. 1–13 (2000)

    Google Scholar 

  44. Tamainot-Telto, Z.: Compact sorption generator prototype. international sorption heat pump conference, vol. ISHPC-065-, Denver, USA: p. 1–6 (2005)

Download references

Acknowledgements

The authors acknowledge the support provided by King Fahd University of Petroleum & Minerals (KFUPM) through the project DUP20101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed M. Zubair.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbassoussi, M.H., Zubair, S.M. Performance Evaluation of a Cascading Adsorption Cooling System Using a Robust Numerical Model. Arab J Sci Eng 47, 16533–16550 (2022). https://doi.org/10.1007/s13369-022-07420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07420-1

Keywords

Navigation