Skip to main content

Advertisement

Log in

Utilization of Discrete Element Method in Multi-phase Soil Modeling for Soil Slope Stability Analysis

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Failure of slopes is often hydrodynamic in nature. Most of the failures are due to water infiltration and movement in the matrix of an otherwise dry soil mass. Consideration of multi-phase aspect of soil behavior is appropriate for logical judgments that culminate in appropriate solutions for slope stability problems. The mesh-free Discrete Element Method has been employed for understanding soil behavior. Different particle sizes and packing have been considered for analysis. Force networks, strain deviators, kinetic energy evolution have been extracted and interpreted and their utility in slope failure prediction has been highlighted. Results show that suction has considerable influence on the behavior of soil at the micro-scale. The soil suction manifests in the form of additional cohesion resulting in arresting the deformations due to applied load as evidenced by the obtained strain deviator plots, thereby aiding in the stability of the soil mass. The changes and fluctuations in kinetic energy can be an indicator of system instability. The research helps to adopt a particle-level approach toward real-time monitoring of stability of unsaturated slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not Applicable.

The authors declare that they have no conflict of interest. The authors have no competing interests to declare that are relevant to the content of this article.

References

  1. Fredlund, D.G.: The 1999 RM Hardy Lecture: the implementation of unsaturated soil mechanics into geotechnical engineering. Can. Geotech. J. 37(5), 963–986 (2000). https://doi.org/10.1139/t00-026

    Article  Google Scholar 

  2. Leshchinsky, B.; Vahedifard, F.; Koo, H.B.; Kim, S.H.: Yumokjeong Landslide: an investigation of progressive failure of a hillslope using the finite element method. Landslides 12(5), 997–1005 (2015). https://doi.org/10.1007/s10346-015-0610-5

    Article  Google Scholar 

  3. Alonso, E.E.; Olivella, S.: Unsaturated soil mechanics applied to geotechnical problems. Unsaturated Soils 2006, 1–35 (2006). https://doi.org/10.1061/40802(189)1

    Article  Google Scholar 

  4. Vanapalli, S.K.: Shear strength of unsaturated soils and its applications in geotechnical engineering practice. In: Buzzi, Fityus & Sheng (eds.) Unsaturated Soils, pp. 579–598. Taylor &Francis Group, London, (2010)

  5. Tan, M.; Cheng, X.; Vanapalli, S.: Simple approaches for the design of shallow and deep foundations for unsaturated soils i: theoretical and experimental studies. Ind. Geotech. J. 51(1), 97–114 (2021). https://doi.org/10.1007/s40098-021-00501-2

    Article  Google Scholar 

  6. Vanapalli, S.K.; Fredlund, D.G.; Pufahl, D.E.: The relationship between the soil-water characteristic curve and the unsaturated shear strength of a compacted glacial till. Geotech. Test. J. 19(3), 259–268 (1996). https://doi.org/10.1520/GTJ10351J

    Article  Google Scholar 

  7. Farahnak, M.; Wan, R.; Pouragha, M.; Eghbalian, M.; Nicot, F.; Darve, F.: Micromechanical description of adsorptive-capillary stress in wet fine-grained media. Comput. Geotech. 137, 104047 (2021). https://doi.org/10.1016/j.compgeo.2021.104047

    Article  Google Scholar 

  8. Liu, X.; Zhou, A.; Shen, S.L.; Li, J.; Arulrajah, A.: Modelling unsaturated soil-structure interfacial behavior by using DEM. Comput. Geotech. 137, 104305 (2021). https://doi.org/10.1016/j.compgeo.2021.104305

    Article  Google Scholar 

  9. Fredlund, D.G.; Rahardjo, H.: Soil mechanics for unsaturated Soils. John Wiley & Sons, USA (1993)

    Book  Google Scholar 

  10. Ghiyasabadi, S.F.; Habibagahi, G.; Nikooee, E.: A capillary water-retention framework for the effective stress parameter considering hydraulic hysteresis. Transp Porous Media 138(3), 489–509 (2021). https://doi.org/10.1007/s11242-021-01626-x

    Article  MathSciNet  Google Scholar 

  11. Zhai, Q.; Rahardjo, H.; Satyanaga, A.; Dai, G.: Estimation of unsaturated shear strength from soil–water characteristic curve. Acta Geotech. 14(6), 1977–1990 (2019). https://doi.org/10.1007/s11440-019-00785-y

    Article  Google Scholar 

  12. Kristo, C.; Rahardjo, H.; Satyanaga, A.: Effect of hysteresis on the stability of residual soil slope. Int. Soil Water Conserv. Res. 7(3), 226–238 (2019). https://doi.org/10.1016/j.iswcr.2019.05.003

    Article  Google Scholar 

  13. Rahardjo, H.; Kim, Y.; Satyanaga, A.: Role of unsaturated soil mechanics in geotechnical engineering. Int. J. Geo-Eng. 10(1), 1–23 (2019). https://doi.org/10.1186/s40703-019-0104-8

    Article  Google Scholar 

  14. Cundall, P.A.; Strack, O.D.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  15. Gingold, R.A.; Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977). https://doi.org/10.1093/mnras/181.3.375

    Article  MATH  Google Scholar 

  16. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  17. Sulsky, D.; Chen, Z.; Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994). https://doi.org/10.1016/0045-7825(94)90112-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Abe, K.; Soga, K.; Bandara, S.: Material point method for coupled hydromechanical problems. J. Geotech. Geoenviron. Eng. 140(3), 04013033 (2014). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001011

    Article  Google Scholar 

  19. Bandara, S.; Soga, K.: Coupling of soil deformation and pore fluid flow using material point method. Comput. Geotech. 63, 199–214 (2015). https://doi.org/10.1016/j.compgeo.2014.09.009

    Article  Google Scholar 

  20. Donzé, F.V.; Richefeu, V.; Magnier, S.A.: Advances in discrete element method applied to soil, rock and concrete mechanics. Electron. J. Geotech. Eng. 8(1), 44 (2009)

    Google Scholar 

  21. Tong, A.T.; Catalano, E.; Chareyre, B.: Pore-scale flow simulations: model predictions compared with experiments on bi-dispersed granular assemblies. Oil Gas Sci. Technol-Revue d’IFP Energies nouvelles 67(5), 743–752 (2012). https://doi.org/10.2516/ogst/2012032

    Article  Google Scholar 

  22. Gu, D.M.; Huang, D.; Liu, H.L.; Zhang, W.G.; Gao, X.C.: A DEM-based approach for modeling the evolution process of seepage-induced erosion in clayey sand. Acta Geotech. 14(6), 1629–1641 (2019). https://doi.org/10.1007/s11440-019-00848-0

    Article  Google Scholar 

  23. Krzaczek, M.; Nitka, M.; Tejchman, J.: Effect of gas content in macropores on hydraulic fracturing in rocks using a fully coupled DEM/CFD approach. Int. J. Numer. Anal. Meth. Geomech. 45(2), 234–264 (2021). https://doi.org/10.1002/nag.3160

    Article  Google Scholar 

  24. Guo, N.; Zhao, J.: A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int. J. Numer. Meth. Eng. 99(11), 789–818 (2014). https://doi.org/10.1002/nme.4702

    Article  MathSciNet  MATH  Google Scholar 

  25. Tran, V.D.H.; Meguid, M.A.; Chouinard, L.E.: A finite–discrete element framework for the 3D modeling of geogrid–soil interaction under pullout loading conditions. Geotext. Geomembr. 37, 1–9 (2013). https://doi.org/10.1016/j.geotexmem.2013.01.003

    Article  Google Scholar 

  26. El Shamy, U.; Denissen, C.: Microscale characterization of energy dissipation mechanisms in liquefiable granular soils. Comput. Geotech. 37(7–8), 846–857 (2010). https://doi.org/10.1016/j.compgeo.2010.07.004

    Article  Google Scholar 

  27. Dong, Y.; Fatahi, B.; Khabbaz, H.; Zhang, H.: Influence of particle contact models on soil response of poorly graded sand during cavity expansion in discrete element simulation. J. Rock Mech. Geotech. Eng. 10(6), 1154–1170 (2018). https://doi.org/10.1016/j.jrmge.2018.03.009

    Article  Google Scholar 

  28. Meng, Q.X.; Wang, H.L.; Xu, W.Y.; Cai, M.; Xu, J.; Zhang, Q.: Multiscale strength reduction method for heterogeneous slope using hierarchical FEM/DEM modeling. Comput. Geotech. 115, 103164 (2019). https://doi.org/10.1016/j.compgeo.2019.103164

    Article  Google Scholar 

  29. Nitka, M.; Tejchman, J.: Modelling of concrete behavior in uniaxial compression and tension with DEM. Granular Matter 17(1), 145–164 (2015). https://doi.org/10.1007/s10035-015-0546-4

    Article  Google Scholar 

  30. Qu, T.; Feng, Y.T.; Wang, Y.; Wang, M.: Discrete element modelling of flexible membrane boundaries for triaxial tests. Comput. Geotech. 115, 103154 (2019). https://doi.org/10.1016/j.compgeo.2019.103154

    Article  Google Scholar 

  31. Šmilauer, V. et al.: Yade Documentation 2nd ed. The Yade Project. http://yade-dem.org/doc/ (2015) Accessed 22 October 2021

  32. Hertz, H.: Ueber die Beruhrung fester elastischer Korper. J. für die reine und angewandte Mathematik 92, 156–171 (1882)

    MATH  Google Scholar 

  33. Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16(3), 259–268 (1949). https://doi.org/10.1115/1.4009973

    Article  MathSciNet  MATH  Google Scholar 

  34. Scholtès, L.; Chareyre, B.; Nicot, F.; Darve, F.: Micromechanics of granular materials with capillary effects. Int. J. Eng. Sci. 47(1), 64–75 (2009). https://doi.org/10.1016/j.ijengsci.2008.07.002

    Article  MathSciNet  MATH  Google Scholar 

  35. Cuomo, S.; Chareyre, B.; d’Arista, P.; Della Sala, M.; Cascini, L.: Micromechanical modelling of rainsplash erosion in unsaturated soils by Discrete Element Method. CATENA 147, 146–152 (2016). https://doi.org/10.1016/j.catena.2016.07.007

    Article  Google Scholar 

  36. Yuan, C.; Chareyre, B.: A pore-scale method for hydromechanical coupling in deformable granular media. Comput. Methods Appl. Mech. Eng. 318, 1066–1079 (2017). https://doi.org/10.1016/j.cma.2017.02.024

    Article  MathSciNet  MATH  Google Scholar 

  37. Sorbino, G.; Nicotera, M.V.: Unsaturated soil mechanics in rainfall-induced flow landslides. Eng. Geol. 165, 105–132 (2013). https://doi.org/10.1016/j.enggeo.2012.10.008

    Article  Google Scholar 

  38. Scholtès, L.; Hicher, P.Y.; Nicot, F.; Chareyre, B.; Darve, F.: On the capillary stress tensor in wet granular materials. Int. J. Numer. Anal. Meth. Geomech. 33(10), 1289–1313 (2009). https://doi.org/10.1002/nag.767

    Article  MATH  Google Scholar 

  39. de Bono, J.P.; McDowell, G.R.: The fractal micro mechanics of normal compression. Comput. Geotech. 78, 11–24 (2016). https://doi.org/10.1016/j.compgeo.2016.04.018

    Article  Google Scholar 

  40. Tordesillas, A.; Walker, D.M.; Lin, Q.: Force cycles and force chains. Phys. Rev. E 81(1), 011302 (2010). https://doi.org/10.1103/PhysRevE.81.011302

    Article  Google Scholar 

  41. Kozicki, J.; Tejchman, J.; Mühlhaus, H.B.: Discrete simulations of a triaxial compression test for sand by DEM. Int. J. Numer. Anal. Meth. Geomech. 38(18), 1923–1952 (2014). https://doi.org/10.1002/nag.2285

    Article  Google Scholar 

  42. Lobo-Guerrero, S., Vallejo, L. E.: DEM as an educational tool in geotechnical engineering. In: GeoCongress 2006: Geotechnical Engineering in the Information Technology Age pp. 1–6. (2006), https://doi.org/10.1061/40803(187)269

  43. Liu, S.; Wang, J.; Kwok, C.Y.: DEM simulation of creep in one-dimensional compression of crushable sand. J. Geotech. Geoenviron. Eng. 145(10), 04019060 (2019). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002098

    Article  Google Scholar 

  44. Li, Z.; Wang, Y.H.; Chow, J.K.: Density effect and associated unjamming events on the aging-induced stiffness increase in sand. Int. J. Geomech. 18(12), 04018173 (2018). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001320

    Article  Google Scholar 

  45. Garcia, F.E.; Bray, J.D.: Distinct element simulations of shear rupture in dilatant granular media. Int. J. Geomech. 18(9), 04018111 (2018). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001238

    Article  Google Scholar 

  46. Shire, T.; O’Sullivan, C.; Hanley, K.J.: The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials. Granular Matter 18(3), 1–10 (2016). https://doi.org/10.1007/s10035-016-0654-9

    Article  Google Scholar 

  47. Utili, S.; Zhao, T.; Houlsby, G.T.: 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Eng. Geol. 186, 3–16 (2015). https://doi.org/10.1016/j.enggeo.2014.08.018

    Article  Google Scholar 

  48. Zhang, N.; Evans, T.M.: Three dimensional discrete element method simulations of interface shear. Soils Found. 58(4), 941–956 (2018). https://doi.org/10.1016/j.sandf.2018.05.010

    Article  Google Scholar 

  49. Abd, I.A.; Fattah, M.Y.; Mekkiyah, H.: Relationship between the matric suction and the shear strength in unsaturated soil. Case Studies Constr. Mater. 13, e00441 (2020). https://doi.org/10.1016/j.cscm.2020.e00441

    Article  Google Scholar 

  50. Zhang, N.; Evans, T.M.: Discrete numerical simulations of torpedo anchor installation in granular soils. Comput. Geotech. 108, 40–52 (2019). https://doi.org/10.1016/j.compgeo.2018.12.013

    Article  Google Scholar 

  51. Gili, J.A.; Alonso, E.E.: Microstructural deformation mechanisms of unsaturated granular soils. Int. J. Numer. Anal. Meth. Geomech. 26(5), 433–468 (2002). https://doi.org/10.1002/nag.206

    Article  MATH  Google Scholar 

  52. Itasca Consulting Group, Inc. (2021) PFC — Particle Flow Code, Ver. 7.0. Minneapolis: Itasca.

  53. Cho, G.C.; Santamarina, J.C.: Unsaturated particulate materials—particle-level studies. J. Geotech. Geoenviron. Eng. 127(1), 84–96 (2001). https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(84)

    Article  Google Scholar 

  54. Tordesillas, A.; Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57(4), 706–727 (2009). https://doi.org/10.1016/j.jmps.2009.01.005

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Not Applicable

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. Ujwala Shenoy.

Ethics declarations

Ethical approval and consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenoy, K.U., Narayan, K.S.B. & Sunil, B.M. Utilization of Discrete Element Method in Multi-phase Soil Modeling for Soil Slope Stability Analysis. Arab J Sci Eng 48, 5321–5333 (2023). https://doi.org/10.1007/s13369-022-07394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07394-0

Keywords

Navigation