Skip to main content

Advertisement

Log in

Effect of PI–TI-Based Virtual Inertia Controller with Virtual Damping on a Renewable Energy-Based Multi-area Power System Under Deregulation

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Modern power systems include a large amount of renewable energy generation and power converter components, which in turn have an effect on the system's inertia. It becomes a major challenge in load frequency control (LFC) of an interconnected system. As a means of overcoming the challenges associated with LFC, this article analyzed the effects of virtual inertia control (VIC) on a three-area interconnected system that incorporates renewable power generators within the deregulated market. Virtual damping and a cascade controller combination of the proportional-integral and tilted-integral controller (PI–TI) have been proposed in the VIC technique to lessen the inertia problem associated with the power system. The controller gains are optimized using a novel algorithm named the mine blast algorithm. In addition to evaluating the effectiveness of the proposed VIC method, it is also studied using AC/DC tie line interconnected systems, and phase locked loops. Under all aspects, the obtained results demonstrate that the proposed VIC technique leads to increase system dynamic performances in different deregulated environments by reducing oscillations and deviations in frequency, tie power, and settling time. The reliability of the proposed control method is also verified by performing stability and robustness analyses. The considered power system was simulated using the OPAL-RT digital simulator under various scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

VIC:

Virtual inertia control

PLL:

Phase Locked Loop

DPM:

Disco participation matrix

cpfs:

Contract participation factors

LCC:

Line-commutated converter

MBA:

Mine Blast Algorithm

ISE:

Integral square error

m, n :

Area (1, 2, 3, where m ≠ n)

T mn :

Synchronizing coefficient (S)

H m :

Inertia constant

Δf m :

Frequency deviation in mth area

Β m :

Frequency response of area 1, 2 and 3 (Dm + 1/Rm)

ΔP tie - mn :

Power error in tie m and n

R m :

Governor speed regulation (Hz/p.u. MW)

T gm, T rm :

Thermal steam governor and re-heater time constant (s)

T dc :

DC tie line time constant (s)

T ES :

Energy storage time constant (s)

K rm :

Reheat gain of steam turbine

K dc :

DC tie line feedback gain

T spv :

PV solar time constant (s)

K b :

Blade gain

K P :

Data fit pitch gain

T a :

Actuator time constant (s)

P m :

Rated active power (MW)

References

  1. Elgerd, O.I.: Electric Energy Systems Theory: An Introduction. McGraw-Hill, New Delhi (2007)

    Google Scholar 

  2. Kunder, P.: Power System Stability and Control. McGraw-Hill, New Delhi (1994)

    Google Scholar 

  3. Saadat, H.: Power System Analysis. McGraw-Hill, New Delhi (1999)

    Google Scholar 

  4. Bevrani, H.; Ghosh, A.; Ledwich, G.: Renewable energy sources and frequency regulation: survey and new perspectives. IET Renew. Power Gener. 4(5), 438–457 (2010)

    Article  Google Scholar 

  5. Torres, L.M.A.; Lopes, L.A.C.; Morán, T.L.A., et al.: Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control. IEEE Trans. Energy Convers. 29(4), 833–840 (2014)

    Article  Google Scholar 

  6. Yan, R.; Saha, T.K.: Frequency response estimation method for high wind penetration considering wind turbine frequency support functions. IET Renew. Power Gener. 9(7), 775–782 (2015)

    Article  Google Scholar 

  7. Bevrani, B.; Toshifumi, I.; Yushi, M.: Virtual synchronous generators: a survey and new perspectives. Int J. Power Energy Syst. 54, 244–254 (2014)

    Article  Google Scholar 

  8. Zhao, H.; Yang, Q.; Zeng, H.: Multi-loop virtual synchronous generator control of inverter-based DGs under microgrid dynamics. IET Gener. Trans. Distrib. 11(3), 795–803 (2017)

    Article  Google Scholar 

  9. Frack, P.F.; Mercado, P.E.; Molina, M.G.: Extending the VISMA concept to improve the frequency stability in Microgrids. In: Proceedings of the International Conference on Intelligent System Application to Power Systems, Porto, 1–6 September (2015)s

  10. Kerdphol, T.; Rahman, F.S.; Mitani, Y.: Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies 11, 981 (2018)

    Article  Google Scholar 

  11. Kerdphol, T.; Rahman, F.S.; Mitani, Y., et al.: Robust virtual inertia control of an Islanded microgrid considering high penetration of renewable energy. IEEE Access 6, 625–636 (2018)

    Article  Google Scholar 

  12. Magdy, G.; Shabib, G.; Elbaset, A.A., et al.: A novel coordination scheme of virtual inertia control and digital protection for microgrid dynamic security considering high renewable energy penetration. IET Renew. Power Gener. 13, 462–474 (2019)

    Article  Google Scholar 

  13. Rakhshani, E.; Remon, D.; Cantarellas, A.M., et al.: Analysis of derivative control based virtual inertia in multi-area high-voltage direct current interconnected power systems. IET Gener. Transm. Distrib. 10(6), 1458–1469 (2016)

    Article  Google Scholar 

  14. Ali, H.; Magdy, G.; Binbin, L., et al.: A new frequency control strategy in an Islanded microgrid using virtual inertia control-based coefficient diagram method. IEEE Access. 7, 16979–16990 (2019)

    Article  Google Scholar 

  15. Bhatt, P.; Roy, R.; Ghoshal, S.: GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control. Int. J. Electr. Power Energy Syst. 32(4), 299–310 (2010)

    Article  Google Scholar 

  16. Sharma, Y.; Saikia, L.C.: Automatic generation control of a multi-area ST-thermal power system using grey wolf optimizer algorithm based classical controllers. Electr. Power Energy Syst. 73, 853–862 (2015)

    Article  Google Scholar 

  17. Tasnin, W.; Saikia, L.C.: Comparative performance of different energy storage devices in AGC of multi-source system including geothermal power plant. J. Renew. Sust. Energy 10(2), 024101–024115 (2018)

    Article  Google Scholar 

  18. Donde, V.; Pai, M.A.; Hiskens, I.A.: Simulation and optimization in an AGC system after deregulation. IEEE Trans. Power Syst. 16(3), 481–489 (2001)

    Article  Google Scholar 

  19. Parida, M.; Nanda, J.: Automatic generation control of a hydro-thermal system in deregulated environment. In: 2005 International Conference on Electrical Machines and Systems. Nanjing, vol. 2, pp. 942–947 (2005)

  20. Debbarma, S.; Saikia, L.C.; Sinha, N.: AGC of a multi-area thermal system under deregulated environment using a non-integer controller. Electr. Power Syst. Res. 95, 175–183 (2013)

    Article  Google Scholar 

  21. Tasnin, W.; Saikia, L.C.; More, R.: Deregulated AGC of multi-area system incorporating dish-Stirling solar thermal and geothermal power plants using fractional order cascade controller. Electr. Power Syst. Res. 101, 60–74 (2018)

    Article  Google Scholar 

  22. Khokhar, B.; Dahiya, S.; Parmar, K.P.S.: A novel hybrid fuzzy PD-TID controller for load frequency control of a standalone microgrid. Arab. J. Sci. Eng. 46, 1053–1065 (2021)

    Article  Google Scholar 

  23. Sharma, M.; Dhundhara, S.; Arya, Y., et al.: Frequency excursion mitigation strategy using a novel COA optimised fuzzy controller in wind integrated power systems. IET Renew. Power Gener. 14(19), 4071–4085 (2020)

    Article  Google Scholar 

  24. Kumari, S.; Shankar, G.: Maiden application of cascade tilt-integral-derivative controller in load frequency control of deregulated power system. Int. Trans. Electr. Energy Syst. 30, e12257 (2020)

    Article  Google Scholar 

  25. Kerdphol, T.; Rahman, F.S.; Watanabe, M., et al.: Enhanced virtual inertia control based on derivative technique to emulate simultaneous inertia and damping properties for microgrid frequency regulation. IEEE Access 7, 14422–14433 (2019)

    Article  Google Scholar 

  26. Ali, S.; Ardeshir, B.; Hadi, E., et al.: Mine blast algorithm-a new populationbased algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)

    Article  Google Scholar 

  27. Ramadan, H.S.; Fathy, A.; Becherif, M.: Optimal gain scheduling of VSC-HVDC system sliding mode control via artificial bee colony and mine blast algorithms. IET Gener. Transm. Distrib. 12(3), 661–669 (2018)

    Article  Google Scholar 

  28. Singh, G.; Kaur, P.: Mine blast algorithm. Int. J. Res. Appl. Sci. Eng. Technol. 6(4), 519–525 (2018)

    Article  Google Scholar 

  29. Fan, L.; Miao, Z.; Osborn, D.: Wind farms with HVDC delivery in load frequency control. IEEE Trans. Power Syst. 24(4), 1894–1895 (2009)

    Article  Google Scholar 

  30. Saikia, L.C.; Das, S.K.; Dash, P.; et al.: Multi-area AGC with AC/DC link and BES and cuckoo search optimized PID controller. In: Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT), Hooghly, India, 1–6 Feb (2015)

  31. Rakhshani, E.; Luna, R.A.K., et al.: Effect of VSC-HVDC on load frequency control in multi-area power system. In: Proceedings of the EEE Energy Conversion Congress and Exposition. Raleigh, USA, pp. 4432–4436 (2012)

  32. Barisal, A.K.: Comparative performance analysis of teaching learning based optimization for automatic load frequency control of multi-source power systems. Int. J. Electr. Power Energy Syst. 66, 67–77 (2015)

    Article  Google Scholar 

  33. Pathak, N.; Verma, A.; Bhatti, T.S., et al.: Modeling of HVDC tie links and their utilization in AGC/LFC operations of multi-area power systems. IEEE Trans. Ind. Electron. 66(3), 2185–2197 (2019)

    Article  Google Scholar 

  34. Rakhshani, E.; Remon, D.; Rodriguez, P.: Effects of PLL and frequency measurements on LFC problem in multi-area HVDC interconnected systems. Electr. Power Energy Syst. 81, 140–152 (2016)

    Article  Google Scholar 

  35. Teodorescu, R.; Liserre, M.; Rodriguez, P.: Grid Converters for Photovoltaic and Wind Power Systems. Wiley, New York (2011)

    Book  Google Scholar 

  36. Rout, U.K.; Sahu, R.K.; Panda, S.: Design and analysis of differential evolution algorithm based automatic generation control for interconnected power system. Ain Shams Eng. J. 4(3), 409–421 (2013)

    Article  Google Scholar 

  37. Kumar, B.; Adhikari, S.; Datta, S., et al.: Real time simulation of modified bias based load disturbance rejection controller for frequency regulation of islanded micro-grid. Int. J. Emerg. Electr. Power Syst. 20(5), 1–13 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumana Das.

Appendix

Appendix

System parameters:

  1. 1.

    Power system: Kpm = 120 Hz/p.u. MW; Tmn = 0.086s; Hm = 5s; Dm = ΔPmfm (p.u. MW/Hz = 0.00833 p.u. MW/Hz); amn = − (Pm/Pn); βi = 425*10−3 p.u. MW/Hz; Ri = 2.4 Hz/p.u MW, Tpm = 20s; f = 60 Hz; Initial loading = 0.5.

  2. 2.

    Thermal Unit: Tgm = 8/100 s; Ttm=3/10 s; Trm = 10 s; Krm= 0.5.

  3. 3.

    WP System: Th= 0.041 s; Kh = 1.25; Ta = 0.6 s; KP = 1.4; Kb = 0.8.

  4. 4.

    SPV System: TSPV = 1.8 s.

  5. 5.

    ES: TES =10 s.

  6. 6.

    DC System: TDC = 0.2s.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Datta, S. & Saikia, L.C. Effect of PI–TI-Based Virtual Inertia Controller with Virtual Damping on a Renewable Energy-Based Multi-area Power System Under Deregulation. Arab J Sci Eng 48, 6431–6452 (2023). https://doi.org/10.1007/s13369-022-07376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07376-2

Keywords

Navigation