Skip to main content

Advertisement

Log in

Implementation of Active and Passive Vibration Control of Flexible Smart Composite Manipulators with Genetic Algorithm

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Endpoint vibrations of flexible manipulators (FM) are suppressed using active or passive control techniques. Suppressing vibrations increases the dynamic performance of the FM in engineering applications. In this study, a model extraction approach is proposed for vibration suppression of single-link flexible smart and composite manipulators. Active and passive control (APC) of residual vibrations is studied theoretically and experimentally. The smart manipulator consists of patching a piezoelectric (PZT) actuator to an aluminum and composite link. The finite element (FE) model of smart manipulators, including revolute joint and PZT actuator, is created in ANSYS. The motion profile and actuator voltage are the inputs, the tip displacement is the output. Then, the state-space (SS) mathematical models of the smart manipulators are extracted from the FE models by using the inputs and outputs. The open-loop and closed-loop simulations are performed using the extracted mathematical models in MATLAB. Passive control is achieved by the motion profiles, while active control is achieved by the PZT actuators. The PD controller with the displacement feedback is used to create the actuation voltages. For the optimized APC, the PD gains are optimized with a genetic algorithm by using the integral of the squared error and integral of absolute magnitude of the error fitness functions. Residual vibrations of smart manipulators are successfully reduced by the optimized APC. To verify the simulation results, open-loop and closed-loop experiments are carried out. The SS mathematical model successfully predicts the dynamic performance of FSM for various motion profiles, according to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rigatos, G.; Busawon, K.: Robotic Manipulators and Vehicles: Control, Estimation and Filtering. Springer, Switzerland (2018)

    Book  MATH  Google Scholar 

  2. Tokhi, M.O.; Azad, A.K.M.: Flexible Robot Manipulators: Modelling, Simulation and Control. The Institution of Engineering and Technology, London, United Kingdom (2008)

    Book  MATH  Google Scholar 

  3. Xu, B.; Yuan, Y.: Two performance enhanced control of flexible-link manipulator with system uncertainty and disturbances. Sci. China Inf. Sci. (2017). https://doi.org/10.1007/s11432-016-0604-6

    Article  Google Scholar 

  4. He, W.; He, X.; Sun, C.: Vibration control of an industrial moving strip in the presence of input deadzone. IEEE Trans. Ind. Electron. 64, 4680–4689 (2017). https://doi.org/10.1109/TIE.2017.2674592

    Article  Google Scholar 

  5. Yang, H.-J.; Tan, M.: Sliding mode control for flexible-link manipulators based on adaptive neural networks. Int. J. Autom. Comput. 15, 239–248 (2018). https://doi.org/10.1007/s11633-018-1122-2

    Article  Google Scholar 

  6. Kiang, C.T.; Spowage, A.; Yoong, C.K.: Review of control and sensor system of flexible manipulator. J. Intell. Robot. Syst. Theory Appl. 77, 187–213 (2015). https://doi.org/10.1007/s10846-014-0071-4

    Article  Google Scholar 

  7. Rahimi, H.N.; Nazemizadeh, M.: Dynamic analysis and intelligent control techniques for flexible manipulators: a review. Adv. Robot. 28, 63–76 (2014). https://doi.org/10.1080/01691864.2013.839079

    Article  Google Scholar 

  8. Benosman, M.; Le Vey, G.: Control of flexible manipulators: a survey. Robotica 22, 533–545 (2004). https://doi.org/10.1017/S0263574703005642

    Article  Google Scholar 

  9. Wu, X.S.; Deng, J.: Robust boundary control of a distributed-parameter flexible manipulator with tip unknown disturbance. Kongzhi Lilun Yu Yingyong/Control Theory Appl. 28, 511–518 (2011)

    Google Scholar 

  10. Dwivedy, S.K.; Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory. 41, 749–777 (2006). https://doi.org/10.1016/j.mechmachtheory.2006.01.014

    Article  MathSciNet  MATH  Google Scholar 

  11. Yavuz, S.; Malgaca, L.; Karagülle, H.: Vibration control of a single-link flexible composite manipulator. Compos. Struct. 140, 684–691 (2016). https://doi.org/10.1016/j.compstruct.2016.01.037

    Article  Google Scholar 

  12. Sun, C.; Gao, H.; He, W.; Yu, Y.: Fuzzy neural network control of a flexible robotic manipulator using assumed mode method. IEEE Trans. Neural Netw. Learn. Syst. 29, 5214–5227 (2018). https://doi.org/10.1109/TNNLS.2017.2743103

    Article  MathSciNet  Google Scholar 

  13. Zhang, H.; Gao, X.; Xu, G.: Research on improved PD control of flexible manipulator. In: Proceedings of 31st Chinese control and decision conference CCDC 2019, 5053–5057 (2019). https://doi.org/10.1109/CCDC.2019.8832942

  14. Korayem, M.H.; Rahimi, H.N.; Nikoobin, A.: The comparative assessment of modeling and control of mechanical robot manipulators. Adv. Strateg. Robot Manip. (2010). https://doi.org/10.5772/10187

    Article  Google Scholar 

  15. Wei, J.; Cao, D.; Liu, L.; Huang, W.: Global mode method for dynamic modeling of a flexible-link flexible-joint manipulator with tip mass. Appl. Math. Model. 48, 787–805 (2017). https://doi.org/10.1016/j.apm.2017.02.025

    Article  MathSciNet  MATH  Google Scholar 

  16. Gurses, K.; Buckham, B.J.; Park, E.J.: Vibration control of a single-link flexible manipulator using an array of fiber optic curvature sensors and PZT actuators. Mechatronics 19, 167–177 (2009). https://doi.org/10.1016/j.mechatronics.2008.09.005

    Article  Google Scholar 

  17. Martins, J.M.; Mohamed, Z.; Tokhi, M.O.; Sá da Costa, J.; Botto, M.A.: Approaches for dynamic modelling of flexible manipulator systems. In: IEE Proceedings: Control Theory and Applications, pp. 401–411 (2003)

  18. Dubay, R.; Hassan, M.; Li, C.; Charest, M.: Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator. In: ISA Transactions, pp. 1609–1619. Elsevier (2014)

  19. Kim, S.M.: Lumped element modeling of a flexible manipulator system. IEEE/ASME Trans. Mechatron. 20, 967–974 (2015). https://doi.org/10.1109/TMECH.2014.2327070

    Article  Google Scholar 

  20. He, W.; He, X.; Zou, M.; Li, H.: PDE model-based boundary control design for a flexible robotic manipulator with input backlash. IEEE Trans. Control Syst. Technol. 27, 790–797 (2019). https://doi.org/10.1109/TCST.2017.2780055

    Article  Google Scholar 

  21. He, W.; Li, Z.; Chen, C.L.P.: A survey of human-centered intelligent robots: issues and challenges. IEEE/CAA J. Autom. Sin. 4, 602–609 (2017). https://doi.org/10.1109/JAS.2017.7510604

    Article  Google Scholar 

  22. Khot, S.M.; Yelve, N.P.: Modeling and response analysis of dynamic systems by using ANSYS© and MATLAB©. JVC/J. Vib. Control. 17, 953–958 (2011). https://doi.org/10.1177/1077546310377913

    Article  MATH  Google Scholar 

  23. Khot, S.M.; Yelve, N.P.; Tomar, R.; Desai, S.; Vittal, S.: Active vibration control of cantilever beam by using PID based output feedback controller. JVC/J. Vib. Control. 18, 366–372 (2012). https://doi.org/10.1177/1077546311406307

    Article  MathSciNet  Google Scholar 

  24. Gülbahçe, E.; Çelik, M.: Active vibration control of a smart beam by a tuner-based PID controller. J. Low Freq. Noise Vib. Act. Control. 37, 1125–1133 (2018). https://doi.org/10.1177/1461348418782169

    Article  Google Scholar 

  25. Peres, R.: Modelling, control and simulation of MIMO 6DoFs vibration test rig. MSc Thesis, Swinburne University of Technology, Melbourne, Australia (2021)

    Google Scholar 

  26. Hanke, M.; Wibbeler, J.: Wie klingt die Maschine am Umrichter? Schnelle Berechnung und Auralisierung des Körperschalls. e i Elektrotechnik und Informationstechnik (2021). https://doi.org/10.1007/s00502-021-00915-z

    Article  Google Scholar 

  27. Shawky, A.; Zydek, D.; Elhalwagy, Y.Z.; Ordys, A.: Modeling and nonlinear control of a flexible-link manipulator. Appl. Math. Model. 37, 9591–9602 (2013). https://doi.org/10.1016/j.apm.2013.05.003

    Article  MathSciNet  MATH  Google Scholar 

  28. Khairudin, M.; Mohamed, Z.; Husain, A.R.: Dynamic model and robust control of flexible link robot manipulator. Telkomnika 9, 279–286 (2011). https://doi.org/10.12928/telkomnika.v9i2.698

    Article  Google Scholar 

  29. Malgaca, L.; Uyar, M.: Hybrid vibration control of a flexible composite box cross-sectional manipulator with piezoelectric actuators. Compos. Part B Eng. 176, 107278 (2019). https://doi.org/10.1016/j.compositesb.2019.107278

    Article  Google Scholar 

  30. Li, Y.; Ge, S.S.; Wei, Q.; Gan, T.; Tao, X.: An online trajectory planning method of a flexible-link manipulator aiming at vibration suppression. IEEE Access. 8, 130616–130632 (2020). https://doi.org/10.1109/ACCESS.2020.3009526

    Article  Google Scholar 

  31. Jin, L.; Li, S.; Yu, J.; He, J.: Robot manipulator control using neural networks: a survey. Neurocomputing 179(34), 23–34 (2018). https://doi.org/10.1016/j.neucom.2018.01.002

    Article  Google Scholar 

  32. Sayahkarajy, M.; Mohamed, Z.; Faudzi, A.A.M.; Supriyanto, E.: Hybrid vibration and rest-to-rest control of a two-link flexible robotic arm using H∞ loop-shaping control design. Eng. Comput. 33, 395–409 (2016). https://doi.org/10.1108/EC-11-2014-0228

    Article  Google Scholar 

  33. Yanmin, W.; Yong, F.; Xinghuo, Y.: Fuzzy terminal sliding mode control of two-link flexible manipulators. In: 2008 34th Annual Conference of IEEE Industrial Electronics, pp. 1620–1625 (2008)

  34. ANSYS Mechanical APDL Verification Manual. SAS IP, Inc. (2013)

  35. Meirovitch, L.; Parker, R.: Fundamentals of vibrations. In: Handbook of Machinery Dynamics, pp. 45–47 (2000)

  36. Gencoglu, C.; Özgüven, H.N.: Optimal placement of piezoelectric patches on a cylindrical shell for active vibration control. Conf. Proc. Soc. Exp. Mech. Ser. 45, 673–681 (2014). https://doi.org/10.1007/978-1-4614-6585-0_65

    Article  Google Scholar 

  37. Rao, S.S.: Mechanical Vibrations. Addison-Wesley Publishing Company, Boston (2011)

    Google Scholar 

  38. Malgaca, L.; Karagülle, H.: Numerical and experimental study on integration of control actions into the finite element solutions in smart structures. Shock Vib. 16, 401–415 (2009). https://doi.org/10.1155/2009/246419

    Article  Google Scholar 

  39. Malgaca, L.: Integration of active vibration control methods with finite element models of smart laminated composite structures. Compos. Struct. 92, 1651–1663 (2010). https://doi.org/10.1016/j.compstruct.2009.11.032

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their special thanks to Dokuz Eylül University Research Fund for the financial support to the study with project number 2020.KB.FEN.009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Uyar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uyar, M., Malgaca, L. Implementation of Active and Passive Vibration Control of Flexible Smart Composite Manipulators with Genetic Algorithm. Arab J Sci Eng 48, 3843–3862 (2023). https://doi.org/10.1007/s13369-022-07279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07279-2

Keywords

Navigation