Skip to main content

Advertisement

Log in

Employing Grey Wolf Optimizer for Energy Sink Holes Avoidance in WSNs

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Many efficient data gathering approaches have been proposed utilizing a mobile sink (MS). MS significantly alleviates the energy holes that result from multi-hop data dissemination near the stationary sink in wireless sensor networks (WSNs). However, most of those approaches design a predetermined MS trajectory that may encounter changes in sensor nodes status during the MS roaming. Thus, this paper proposed two MS methods called fuzzy A-star sink mobility (FASM) and grey wolf mobility (GWM). Both methods aim to alleviate the energy holes and data latency by considering the residual energy, sensor density, source sensors angle, and traffic load as guiding parameters for the next potential position. FASM uses a grid model with a fuzzy inference system, while GWM uses the grey wolf optimizer to explore the optimal MS position precisely. Both methods utilize fuzzy A-star routing protocol to run all sensors even if they were far from the MS to reduce the buffers overflow and provide a balanced energy consumption during data routing. The effectiveness of the proposed schemes for prolonging the WSNs lifetime is confirmed through strict simulations as they have been compared with two efficient existing protocols which are WRP and DBRkM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. AlShawi, I.; Yan, L.; Pan, W.; Luo, B.: Fuzzy chessboard clustering and artificial bee colony routing method for energy-efficient heterogeneous wireless sensor networks. Int. J. Commun Syst 27(12), 3581–3599 (2014)

    Article  Google Scholar 

  2. Al-Hussain, E.A.; Al-Suhail, G.A.: Towards energy savings in cluster-based routing for wireless sensor networks. In: International Conference on Intelligent Computing and Optimization, pp. 407–416. Springer, Berlin (2021)

  3. Kaur, G.; Chanak, P.; Bhattacharya, M.: Energy-efficient intelligent routing scheme for IoT-enabled WSNs. IEEE Intern. Things J. 8(14), 11440–11449 (2021)

    Article  Google Scholar 

  4. Alshawi, I.S.; Alalewi, I.O.: Lifetime optimization in wireless sensor networks using FDstar-lite routing algorithm. Int. J. Comput. Sci. Inf. Secur. 14(3), 46 (2016)

    Google Scholar 

  5. Han, Z.; Wu, J.; Zhang, J.; Liu, L.; Tian, K.: A general self-organized tree-based energy-balance routing protocol for wireless sensor network. IEEE Trans. Nucl. Sci. 61(2), 732–740 (2014)

    Article  Google Scholar 

  6. Kim, D.; Abay, B.H.; Uma, R.; Wu, W.; Wang, W.; Tokuta, A.O.: Minimizing data collection latency in wireless sensor network with multiple mobile elements. In: 2012 Proceedings IEEE INFOCOM: IEEE, pp. 504–512 (2012)

  7. Chauhan, V.; Soni, S.: Mobile sink-based energy efficient cluster head selection strategy for wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 11(11), 4453–4466 (2020)

    Article  Google Scholar 

  8. Krishnan, M.; Lim, Y.: Reinforcement learning-based dynamic routing using mobile sink for data collection in WSNs and IoT applications. J. Netw. Comput. Appl. 194, 103223 (2021)

    Article  Google Scholar 

  9. Singh, M.K.; Amin, S.I.; Choudhary, A.: Genetic algorithm based sink mobility for energy efficient data routing in wireless sensor networks. AEU-Int. J. Electron. Commun. 131, 153605 (2021)

    Article  Google Scholar 

  10. Ammari, H.M.: Investigating the energy sink-hole problem in connected k -covered wireless sensor networks. IEEE Trans. Comput. 63(11), 2729–2742 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Salarian, H.; Chin, K.-W.; Naghdy, F.: An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Trans. Veh. Technol. 63(5), 2407–2419 (2013)

    Article  Google Scholar 

  12. Nitesh, K.; Kaswan, A.; Jana, P.K.: Energy density based mobile sink trajectory in wireless sensor networks. Microsyst. Technol. 25(5), 1771–1781 (2019)

    Article  Google Scholar 

  13. Tong, L.; Zhao, Q.; Adireddy, S.: Sensor networks with mobile agents. In: IEEE Military Communications Conference 2003 MILCOM 2003, vol. 1, pp. 688–693 (2003)

  14. Luo, J.; Hubaux, J.-P.: Joint sink mobility and routing to maximize the lifetime of wireless sensor networks: the case of constrained mobility. IEEE/ACM Trans. Netw. 18(3), 871–884 (2009)

    Article  Google Scholar 

  15. Somasundara, A.A.; Ramamoorthy, A.; Srivastava, M.B.: Mobile element scheduling with dynamic deadlines. IEEE Trans. Mob. Comput. 6(4), 395–410 (2007)

    Article  Google Scholar 

  16. Basagni, S.; Carosi, A.; Melachrinoudis, E.; Petrioli, C.; Wang, Z.M.: Controlled sink mobility for prolonging wireless sensor networks lifetime. Wireless Netw. 14(6), 831–858 (2008)

    Article  Google Scholar 

  17. Kim, D.; Abay, B.H.; Uma, R.; Wu, W.; Wang, W.; Tokuta, A.O.: Minimizing data collection latency in wireless sensor network with multiple mobile elements. In: 2012 Proceedings IEEE INFOCOM : IEEE, pp. 504–512 (2012)

  18. Zhan, C.; Zeng, Y.: Completion time minimization for multi-UAV-enabled data collection. IEEE Trans. Wirel. Commun. 18(10), 4859–4872 (2019)

    Article  Google Scholar 

  19. Donta, P.K.; Amgoth, T.; Annavarapu, C.S.R.: An extended ACO-based mobile sink path determination in wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 12(10), 8991–9006 (2021)

    Article  Google Scholar 

  20. Mehto, A.; Tapaswi, S.; Pattanaik, K.: Optimal rendezvous points selection to reliably acquire data from wireless sensor networks using mobile sink. Computing 103(4), 707–733 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, X.; Fu, X.; Yang, Y.: Energy-efficient trajectory planning algorithm based on multi-objective PSO for the mobile sink in wireless sensor networks. IEEE Access 7, 176204–176217 (2019)

    Article  Google Scholar 

  22. Khedr, A.M.; Al Aghbari, Z.; Khalifa, B.E.: Fuzzy-based multi-layered clustering and ACO-based multiple mobile sinks path planning for optimal coverage in WSNs. IEEE Sens. J. 22(7), 7277–7287 (2022)

    Article  Google Scholar 

  23. Kaswan, A.; Nitesh, K.; Jana, P.K.: Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU Int. J. Electron. Commun. 73, 110–118 (2017)

    Article  Google Scholar 

  24. AlShawi, I.S.; Yan, L.; Pan, W.; Luo, B.: Lifetime enhancement in wireless sensor networks using fuzzy approach and A-star algorithm. IEEE Sens. J. 12(10), 3010–3018 (2012)

    Article  Google Scholar 

  25. Lin, Z.; Keh, H.-C.; Wu, R.; Roy, D.S.: Joint data collection and fusion using mobile sink in heterogeneous wireless sensor networks. IEEE Sens. J. 21(2), 2364–2376 (2020)

    Article  Google Scholar 

  26. Thomson, C.; Wadhaj, I.; Tan, Z.; Al-Dubai, A.: Towards an energy balancing solution for wireless sensor network with mobile sink node. Comput. Commun. 170, 50–64 (2021)

    Article  Google Scholar 

  27. Roy, S.; Mazumdar, N.; Pamula, R.: An energy and coverage sensitive approach to hierarchical data collection for mobile sink based wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 12(1), 1267–1291 (2021)

    Article  Google Scholar 

  28. Xie, G.; Pan, F.: Cluster-based routing for the mobile sink in wireless sensor networks with obstacles. IEEE Access 4, 2019–2028 (2016)

    Article  Google Scholar 

  29. Basagni, S.; Carosi, A.; Melachrinoudis, E.; Petrioli, C.; Wang, Z.M.; A new MILP formulation and distributed protocols for wireless sensor networks lifetime maximization. In: 2006 IEEE International Conference on Communications, vol. 8, pp. 3517–3524. IEEE (2006)

  30. Marta, M.; Cardei, M.: Using sink mobility to increase wireless sensor networks lifetime. In: 2008 international symposium on a world of wireless, mobile and multimedia networks, pp. 1–10. IEEE (2008)

  31. Sethi, D.: An approach to optimize homogeneous and heterogeneous routing protocols in WSN using sink mobility. Mapan 35(2), 241–250 (2020)

    Article  Google Scholar 

  32. Srivastava, A.K.; Sinha, A.; Mishra, R.; Gupta, S.K.: EEPMS: energy efficient path planning for mobile sink in wireless sensor networks: a genetic algorithm-based approach. In: Advances in Computational Intelligence and Communication Technology, pp. 101–108. Springer, Berlin (2021).

  33. Lu, Y.; Sun, N.; Pan, X.: Mobile sink-based path optimization strategy in wireless sensor networks using artificial bee colony algorithm. IEEE Access 7, 11668–11678 (2018)

    Article  Google Scholar 

  34. Preeth, S.S.L.; Dhanalakshmi, R.; Shakeel, P.M.: An intelligent approach for energy efficient trajectory design for mobile sink based IoT supported wireless sensor networks. Peer-to-Peer Netw. Appl. 13(6), 2011–2022 (2020)

    Article  Google Scholar 

  35. Gupta, P.; Tripathi, S.; Singh, S.: Energy efficient rendezvous points based routing technique using multiple mobile sink in heterogeneous wireless sensor networks. Wirel. Netw. 27(6), 3733–3746 (2021)

    Article  Google Scholar 

  36. Wen, W.; Shang, C.; Chang, C.-Y.; Roy, D.S.: DEDC: Joint density-aware and energy-limited path construction for data collection using mobile sink in WSNs. IEEE Access 8, 78942–78955 (2020)

    Article  Google Scholar 

  37. Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1(4), 660–670 (2002)

    Article  Google Scholar 

  38. Chang, C.-Y.; Chen, S.-Y.; Chang, I.-H.; Yu, G.-J.; Roy, D.S.: Multirate data collection using mobile sink in wireless sensor networks. IEEE Sens. J. 20(14), 8173–8185 (2020)

    Article  Google Scholar 

  39. Zgurovsky, M.Z.; Zaychenko, Y.P.: The Fundamentals of Computational Intelligence: System Approach. Springer, New York (2017)

    Book  Google Scholar 

  40. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Dheyaa Algubili.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algubili, M.D., Alshawi, I.S. Employing Grey Wolf Optimizer for Energy Sink Holes Avoidance in WSNs. Arab J Sci Eng 48, 2297–2311 (2023). https://doi.org/10.1007/s13369-022-07259-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07259-6

Keywords

Navigation