Skip to main content

Advertisement

Log in

Clamping Force Sensor Fault Analysis and Fault-Tolerant Control of the Electromechanical Brake System

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In rail transportation, electromechanical brake (EMB) technology is seen as the next generation of the braking system. Due to the deplorable working conditions (such as wading, impact vibration, and voltage surge), the clamping force sensor can encounter bridge-cut-off, zero shift, cable transmission faults, and other problems. Hence, the reliability of the clamping force sensor is greatly challenged. For the thorny problem, this paper proposed a novel clamping force sensor fault-tolerant control strategy that can be a backup control loop to enhance the reliability of the system. Firstly, the paper describes the working principle of the EMB system and establishes its nonlinear mathematical model. Combined with the piezoresistive sensor working principle, the cause of clamping force sensor failure is analyzed. Meanwhile, the corresponding relationship between motor output torque and the braking process is explained, and a gap adjustment control strategy without a clamping force sensor is proposed. Then, a clamping force estimation method is presented under strong coupling conditions, considering the different hysteresis characteristics between foreign clamping forces. In addition, the designed enhanced extended state observer (ESO) utilizes the sigmoid function to solve the high-frequency chattering phenomenon of the conventional nonlinearity ESO. With the enhanced ESO, the power fast terminal sliding-mode (PFTSM) control can ensure the dynamic response and improve the anti-interference ability of the system. Finally, compared with a conventional method, a static experimental platform verifies the effectiveness of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The original data are used during the research, and it is here available with the author, so it can be provided at any time on the request.

Abbreviations

EMB:

Electromechanical brake

ESO:

Extended state observer

PFTSMC:

Power fast terminal sliding-mode control

ADRC:

Active disturbance rejection control

SMC:

Sliding-mode control

EMA:

Electromechanical actuator

PMSM:

Permanent magnet synchronous machine

FOC:

Field-oriented control

SM-ADRC:

Sliding-mode active disturbance rejection composite controller

References

  1. Jeong, N.T.; Wang, M.; Yoo, S. et al.: Conceptual design of high-speed semi-low-floor bogie for train-tram. Int. J. Automot. Technol. 18, 523–533 (2017). https://doi.org/10.1007/s12239-017-0052-2

  2. Zarko, D.; Stipetic, S.; Martinovic, M., et al.: Reduction of computational efforts in finite element based permanent magnet traction motor optimization. IEEE Trans. Ind. Electron. 65(2), 1799–1807 (2018). https://doi.org/10.1109/TIE.2017.2736485

    Article  Google Scholar 

  3. Zhu N.; Gao K.; Yan D. et al.: Modeling and analysis of hydraulic braking system of low-floor tram based on AMESim. In: 2019 25th International Conference on Automation and Computing (ICAC) 1–7 (2019). https://doi.org/10.23919/IConAC.2019.8895044

  4. Chudzikiewicz, A.; Korzeb, J.: Simulation study of wheels wear in low-floor tram with independently rotating wheels. Arch. Appl. Mech. 88, 175–192 (2018). https://doi.org/10.1007/s00419-017-1301-6

    Article  Google Scholar 

  5. Lee K.J.; Ki Y.H.; Cheon J.S. et al.: Approach to functional safety-compliant ECU design for electro-mechanical brake systems. Int. J Automot. Technol. 15, 325–332 (2014). https://doi.org/10.1007/s12239-014-0033-7

  6. Baek, S.; Oh, H.; Kim, S., et al.: A clamping force performance evaluation of the electro-mechanical brake using PMSM. Energies 11(11), 2876 (2018). https://doi.org/10.3390/en11112876

    Article  Google Scholar 

  7. Ma, R.; Zhang, H.; Yuan, M., et al.: Chattering suppression fast terminal sliding mode control for aircraft EMA braking system. IEEE Trans. Transp. Electrif. 7(3), 1901–1914 (2021). https://doi.org/10.1109/TTE.2021.3054510

    Article  Google Scholar 

  8. Ahn J.K.; Jung K.H.; Kim D.H. et al.: Analysis of a regenerative braking system for Hybrid Electric Vehicles using an Electro-Mechanical Brake. Int. J Automot. Technol. 10, 229–234 (2009). https://doi.org/10.1007/s12239-009-0027-z

  9. Wu M.; Lei C.; Chen M.: Control algorithm optimization of clamping force based on train electromechanical braking system. J. Tongji Univ. (Natural Science) 48(06), 898–903 (2020). https://doi.org/10.11908/j.issn.0253-374x.19533

  10. Wu, M.; Ma, T.; Tian, C., et al.: Discussion on development trend of train braking technology. China Railway Sci. 40(1), 134–144 (2019)

    Google Scholar 

  11. Li, Y.; Shim, T.; Shin, D., et al.: Control system design for electromechanical brake system using novel clamping force model and estimator. IEEE Trans. Veh. Technol. 70(9), 8653–8668 (2021). https://doi.org/10.1109/TVT.2021.3095900

    Article  Google Scholar 

  12. Eum, S.; Choi, J.; Park, S., et al.: Robust clamping force control of an electromechanical brake system for application to commercial city buses. Energies 10(2), 220 (2017). https://doi.org/10.3390/en10020220

    Article  Google Scholar 

  13. Fu, Y.; Hu, X.; Wang, W.: Simulation and experimental study of a new electromechanical brake with automatic wear adjustment function. Int. J. Automot. Technol. 21(1), 227–238 (2020). https://doi.org/10.1007/s12239-020-0022-y

    Article  Google Scholar 

  14. Jo, C.; Hwang, S.; Kim, H.: Clamping-force control for electromechanical brake. IEEE Trans. Veh. Technol. 59(7), 3205–3212 (2010). https://doi.org/10.1109/TVT.2010.2043696

    Article  Google Scholar 

  15. Kwon, S.; Lee, S.; Lee, J., et al.: Accurate state estimation for electromechanical brake system. J. Electr. Eng. Technol. 14(2), 889–896 (2019). https://doi.org/10.1007/s42835-019-00124-x

    Article  Google Scholar 

  16. Xu, Z.; Gerada, C.: Enhanced force estimation for electromechanical brake actuators in transportation vehicles. IEEE Trans. Power Electron. 36(12), 14329–14339 (2021). https://doi.org/10.1109/TPEL.2021.3085996

    Article  Google Scholar 

  17. Hua, X.; Huang, D.; Guo, S.: Extended state observer based on ADRC of linear system with incipient fault. Int. J. Control Autom. Syst. 18, 1425–1434 (2020). https://doi.org/10.1007/s12555-019-0052-2

    Article  Google Scholar 

  18. Najm, A.A.; Ibraheem, I.K.: Altitude and attitude stabilization of UAV quadrotor system using improved active disturbance rejection control. Arab. J. Sci. Eng. 45(3), 1985–1999 (2020). https://doi.org/10.1007/s13369-020-04355-3

    Article  Google Scholar 

  19. Lu, W.; Li, Q.; Lu, K., et al.: Load adaptive PMSM drive system based on an improved ADRC for manipulator joint. IEEE Access 9, 33369–33384 (2021). https://doi.org/10.1109/ACCESS.2021.3060925

    Article  Google Scholar 

  20. Yu L.; He G.; Wang X. et al.: Robust fixed-time sliding mode attitude control of tilt tri-rotor UAV in Helicopter mode. IEEE Trans. Ind. Electron., Early Access 2021. https://doi.org/10.1109/TIE.2021.3118556

  21. Xu, B.; Zhang, L.; Ji, W.: Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives. IEEE Trans. Transp. Electrif. 7(4), 2753–2762 (2021). https://doi.org/10.1109/TTE.2021.3083925

    Article  Google Scholar 

  22. Wang, X.; Wang, Z.; He, M., et al.: Fault-tolerant control of dual three-phase PMSM drives with minimized copper loss. IEEE Trans. Power Electron. 35(4), 4117–4126 (2021). https://doi.org/10.1109/TPEL.2019.2933613

    Article  Google Scholar 

  23. Wang, Y.; Feng, Y.; Zhang, X., et al.: A new reaching law for antidisturbance sliding-mode control of PMSM speed regulation system. IEEE Trans. Power Electron. 35(4), 4117–4126 (2019). https://doi.org/10.1109/TPEL.2019.2933613

    Article  Google Scholar 

  24. Zhao, Y.; Lin, H.; Li, B.: Sliding-mode clamping force control of electromechanical brake system based on enhanced reaching law. IEEE Access 9, 19506–19515 (2021). https://doi.org/10.1109/ACCESS.2021.3052944

    Article  Google Scholar 

  25. Chen Z.; Zhang Z.; Cao Y.: Fal function improvement of ADRC and its application in quadrotor aircraft attitude control. Control and Decis. 33(10), 1901–1907 (2018). https://doi.org/10.13195/j.kzyjc.2017.0606

Download references

Funding

This research was funded by the National Natural Science Foundation of China (No. 51777170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyun Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Lin, H., Elahi, H. et al. Clamping Force Sensor Fault Analysis and Fault-Tolerant Control of the Electromechanical Brake System. Arab J Sci Eng 48, 6011–6023 (2023). https://doi.org/10.1007/s13369-022-07214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07214-5

Keywords

Navigation