Skip to main content
Log in

Modeling of High-Resolution Radar Sea Clutter Using Two Approximations of the Weibull Plus Thermal Noise Distribution

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In radar detection applications, it is important to select the best statistical distribution of clutter for constructing appropriate target detection algorithms. In this work, we propose to model the amplitude statistics of the high-resolution radar by two approximated models of Weibull plus thermal noise (WN) which are considered as compound models with the speckle and texture following a Weibull distribution. First, the overall probability density function and the complementary cumulative distribution function (CCDF) are derived in the integral form as well as the expression of the moments. Then, the estimation of the parameters for each model is conducted using the parametric curve fitting estimation method of the CCDF function based on the Nelder–Mead algorithm and the moments matching method. From the real intelligent pixel processing X-band (IPIX) sea data, the fitted curves of the WN models are evaluated and compared to those of the compound Gaussian plus thermal noise (CGN) models. The modeling experiments are worked out and showed that the proposed approximated models match accurately sea clutter returns compared to CGN models, especially in the tail region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rosenberg, L.: Sea-spike detection in high grazing angle X-band sea-clutter. IEEE Trans. Geosci. Remote Sens. 51, 4556–4562 (2013)

    Article  Google Scholar 

  2. Trunk, G.V.; George, S.F.: Detection of targets in non-Gaussian sea clutter. IEEE Trans. Aerosp. Electron. Syst. AES–6, 620–628 (1970)

    Article  Google Scholar 

  3. Schleher, D.: Radar detection in Weibull clutter. IEEE Trans. Aerosp. Electron. Syst. AES–12, 736–743 (1976)

    Article  Google Scholar 

  4. Jakeman, E.; Pusey, P.: A model for non-Rayleigh Sea Echo. IEEE Trans. Antennas Propag. 24, 806–814 (1976)

    Article  Google Scholar 

  5. Ward, K.D.; Tough, R.J.A.; Watts, S.: Sea clutter: Scattering, the K Distribution and radar performance. Institution of Engineering and Technology, Stevenage, Herts, United Kingdom (2013)

  6. Dong, Y.: Distribution of X-band high resolution and high grazing angle sea clutter. Defence Science and technology Organisation Edinburgh (Australia) electronic warfare and radar division, United States (2006)

  7. Fiche, A.; Angelliaume, S.; Rosenberg, L.; Khenchaf, A.: Analysis of X-band SAR sea-clutter distributions at different grazing angles. IEEE Trans. Geosci. Remote Sens. 53, 4650–4660 (2015)

    Article  Google Scholar 

  8. Balleri, A.; Nehorai, A.; Wang, J.: Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture. IEEE Trans. Aerosp. Electron. Syst. 43, 775–779 (2007)

    Article  Google Scholar 

  9. Weinberg, G.V.: Assessing pareto fit to high-resolution high-grazing-angle sea clutter. Electron. Lett. 47, 516 (2011)

    Article  Google Scholar 

  10. Rosenberg, L.; Bocquet, S.: Radar Detection Performance in Medium Grazing Angle X-band Sea-clutter. https://apps.dtic.mil/sti/pdfs/AD1001397.pdf

  11. Mezache, A.; Soltani, F.; Sahed, M.; Chalabi, I.: A model for non Rayleigh sea clutter amplitudes using compound inverse Gaussian distribution. In: 2013 IEEE Radar Conference (RadarCon13) (2013)

  12. Gouri, A.; Mezache, A.; Oudira, H.; Bentoumi, A.: Mixture of compound-Gaussian distributions for radar sea-clutter modeling. In: 2016 4th International Conference on Control Engineering & Information Technology (CEIT) (2016)

  13. Anastassopoulos; Lampropoulos, G.A.; Drosopoulos, A.; Rey, N.: High resolution radar clutter statistics. IEEE Trans. Aerosp. Electron. Syst. 35, 43–60 (1999)

    Article  Google Scholar 

  14. Helstrom, C.W.: Distribution of the sum of clutter and thermal noise. IEEE Trans. Aerosp. Electron. Syst. 36, 709–713 (2000)

    Article  Google Scholar 

  15. Greco, M.; Gini, F.; Rangaswamy, M.: Statistical analysis of measured polarimetric clutter data at different range resolutions. IEE Proc. Radar Sonar Navig. 153, 473 (2006)

    Article  Google Scholar 

  16. Mezache, A.; Sahed, M.; Laroussi, T.; Chikouche, D.: Two novel methods for estimating the compound K-clutter parameters in presence of thermal noise. IET Radar Sonar Navig. 5, 934 (2011)

    Article  Google Scholar 

  17. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E.: Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mezache, A.; Soltani, F.; Sahed, M.; Chalabi, I.: Model for non-Rayleigh clutter amplitudes using compound inverse Gaussian distribution: An experimental analysis. IEEE Trans. Aerosp. Electron. Syst. 51, 142–153 (2015)

    Article  Google Scholar 

  19. Greco, M.; Bordoni, F.; Gini, F.: X-band sea-clutter nonstationarity: influence of long waves. IEEE J. Oceanic Eng. 29, 269–283 (2004)

    Article  Google Scholar 

  20. Nohara, T.J.; Haykin, S.: Canadian east coast radar trials and the K-distribution. IEE Proc. F Radar Signal Process. 138, 80 (1991)

    Article  Google Scholar 

  21. Conte, E.; De Maio, A.; Galdi, C.: Statistical analysis of real clutter at different range resolutions. IEEE Trans. Aerosp. Electron. Syst. 40, 903–918 (2004)

    Article  Google Scholar 

  22. Haykin, S.; Krasnor, C.; Nohara, T.J.; Currie, B.W.; Hamburger, D.: A coherent dual-polarized radar for studying the Ocean Environment. IEEE Trans. Geosci. Remote Sens. 29, 189–191 (1991)

    Article  Google Scholar 

  23. Farina, A.; Gini, F.; Greco, M.V.; Verrazzani, L.: High resolution SEA CLUTTER DATA: statistical analysis of recorded live data. IEE Proc. Radar Sonar Navig. 144, 121 (1997)

    Article  Google Scholar 

  24. Lefaida, S.; Soltani, F.; Mezache, A.: Radar Sea-clutter modelling using fractional generalised pareto distribution. Electron. Lett. 54, 999–1001 (2018)

    Article  Google Scholar 

  25. Rosenberg, L.; Angelliaume, S.: Characterisation of the tri-modal discrete sea clutter model. In: 2018 International Conference on Radar (RADAR) (2018)

  26. Song, D.; Sarikaya, T.B.; Serkan, S.T.; Tharmarasa, R.; Sobaci, E.; Kirubarajan, T.: Heavy-tailed sea clutter modeling for shore-based radar detection. In: 2018 IEEE Radar Conference (RadarConf18) (2018)

  27. Angelliaume, S.; Rosenberg, L.; Ritchie, M.: Modeling the amplitude distribution of radar sea clutter. Remote Sens. 11, 319 (2019)

    Article  Google Scholar 

  28. Xue, J.; Xu, S.; Liu, J.; Shui, P.: Model for non-gaussian sea clutter amplitudes using generalized inverse gaussian texture. IEEE Geosci. Remote Sens. Lett. 16, 892–896 (2019)

    Article  Google Scholar 

  29. Rosenberg, L.: Parametric modeling of sea clutter Doppler Spectra. IEEE Trans. Geosci. Remote Sens. 60, 1–9 (2022)

    Google Scholar 

  30. The McMaster IPIX radar sea clutter database. http://soma.ece.mcmaster.ca/ipix/

  31. Younsi, A.; Greco, M.; Gini, F.; Zoubir, A.M.: Performance of the adaptive generalised matched subspace constant false alarm rate detector in non-Gaussian Noise: An experimental analysis. IET Radar Sonar Navig. 3, 195 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faouzi Soltani.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guidoum, N., Soltani, F. & Mezache, A. Modeling of High-Resolution Radar Sea Clutter Using Two Approximations of the Weibull Plus Thermal Noise Distribution. Arab J Sci Eng 47, 14957–14967 (2022). https://doi.org/10.1007/s13369-022-07130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07130-8

Keywords

Navigation