Skip to main content
Log in

The Study of Electron Acoustic Waves (EAWs) in Non-thermal Plasma

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Using the kinetic theory approach, a theoretical investigation has been made to study the electron acoustic waves (EAWs) in non-thermal plasma. The dispersion relation \(\omega _{r}\) and Landau damping rate \(\gamma \) for Langmuir waves (LWs) and electron acoustic waves (EAWs) are derived in a three component (ions, cold electrons and hot electrons) plasma, characterized by non-thermal Cairn’s distribution function. Analytical expressions show that the real frequency \(\omega _{r}\) and Landau damping rate \(\gamma \) are strongly influenced by non-thermal parameter \(\alpha \), hot to cold electron temperature ratio \(T_{h}/T_{c}\) and by the population ratio of hot to cold electron \(n_{0h}/n_{0c}\). Furthermore, in the absence of non-thermal particles the well-known Maxwellian results are retrieved. For illustration the present model has been applied to space and astrophysical plasma such as: geomagnetic tail, cusp of the magnetosphere and the dayside auroral acceleration region where the cold and hot electrons population exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fried, B.D.; Gould, R.W.: Longitudinal ion oscillations in a hot plasma. Phys. Fluids 4, 139 (1961). https://doi.org/10.1063/1.1706174

    Article  MathSciNet  Google Scholar 

  2. Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion, 2nd edn, pp. 6–15. Plenium Press, New York (1984)

    Book  Google Scholar 

  3. Gary, S.P.; Tokar, R.L.: The electron-acoustic mode. Phys. Fluids 28, 2439 (1985). https://doi.org/10.1063/1.865250

    Article  Google Scholar 

  4. Yu, M.Y.; Shukla, P.K.: Linear and nonlinear modified electron-acoustic waves. Phys. Plasmas 29(03), 409–413 (1983). https://doi.org/10.1017/S0022377800000866

    Article  Google Scholar 

  5. Kawai, Y.; Nakamura, Y.; Itoh, T.; Hara, T.; Kawabe, T.J.: Propagation of electron waves in a Now-Maxwellian plasma. Phys. Soc. Jpn. 38(3), 876–881 (1975)

    Article  Google Scholar 

  6. Karlstad, G., Trulsen, J., Armstrong, R.J., Electron plasma waves in a DP machine, in Proceedings of the International Conference on Plasma Physics, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland, 1, 12 (1984)

  7. Hellberg, M.A.; Mace, R.L.; Armstrong, R.J.; Karlstad, G.: Electron-acoustic waves in the laboratory: an experiment revisited. J. Plasma Phys. 64, 433–443 (2000). https://doi.org/10.1017/S0022377800008758

    Article  Google Scholar 

  8. Kabantsev, A.A.; Valentini, F.; Driscoll, C.F.; Conf, A.I.P.: AIP Conf. Proc. 862, 13 (2006)

    Article  Google Scholar 

  9. Montgomery, D.S.; Focia, R.J.; Rose, H.A.; Russell, D.A.; Cobble, J.A.; Fernndez, J.C.; Johnson, R.P.: Observation of stimulated electron-acoustic-wave scattering. Phys. Rev. Lett. 8, 155001 (2001). https://doi.org/10.1103/PhysRevLett.87.155001

    Article  Google Scholar 

  10. Sircombe, N.J.; Arber, T.D.; Dendy, R.O.: Kinetic scattering effects in laser plasma interactions. Plasma Phys. Controlled Fusion 48, 1141 (2006)

    Article  Google Scholar 

  11. Nikolić, Lj.; Ishiguro, S.; Sato, T.: Stimulated electron-acoustic-wave scattering in a laser plasma. Phys. Rev. E 66, 036404 (2002). https://doi.org/10.1103/PhysRevE.66.036404

    Article  Google Scholar 

  12. Ghizzo, A.; Johnston, T.W.; Bertrand, P.; Albrecht-Marc, M.: Stimulated-Raman-scatter behavior in a relativistically hot plasma slab and an electromagnetic low-order pseudocavity. Phys. Rev. E 74, 046407 (2006). https://doi.org/10.1103/PhysRevE.74.046407

    Article  Google Scholar 

  13. Holloway, J.P.; Dorning, J.J.: Undamped plasma waves. Phys. Rev. A 44, 3856 (1991). https://doi.org/10.1103/PhysRevA.44.3856

    Article  Google Scholar 

  14. Schamel, H.: Hole equilibria in Vlasov-Poisson systems: a challenge to wave theories of ideal plasmas. Phys. Plasmas 7, 4831 (2000). https://doi.org/10.1063/1.1316767

    Article  MathSciNet  Google Scholar 

  15. Valentini, F.; O’Neil, T.M.; Dubin, D.H.E.: Excitation of nonlinear electron acoustic waves. Phys. Plasmas 13, 052303 (2006). https://doi.org/10.1063/1.2198467

    Article  Google Scholar 

  16. Gray, S.P.: The electron/electron acoustic instability. Phys. Fluids 30, 2745 (1987). https://doi.org/10.1063/1.866040

    Article  Google Scholar 

  17. Zaheer, S.; Murtaza, G.; Shah, H.A.: Some electrostatic modes based on non-Maxwellian distribution functions. Phys. Plasmas. 11, 2246 (2004). https://doi.org/10.1063/1.1688330

    Article  Google Scholar 

  18. Mace, R.L.; Amery, G.; Hellberg, M.A.: The electron-acoustic mode in a plasma with hot suprathermal and cool Maxwellian electrons. Phys. Plasmas 6, 44–49 (1999). https://doi.org/10.1063/1.873256

    Article  Google Scholar 

  19. Tokar, R.L.; Gary, S.P.: Electrostatic hiss and the beam driven electron acoustic instability in the dayside polar cusp. Geophys. Res. Lett. 11, 1180 (1984). https://doi.org/10.1029/GL011i012p01180

    Article  Google Scholar 

  20. Lin, C.S.; Burch, J.L.; Shawhan, S.D.; Gurnett, D.A.: Correlation of auroral his and upward electron beams near the polar cusp. J. Geophys. Res. 89, 925 (1984)

    Article  Google Scholar 

  21. Pottelette, R.; Ergun, R.E.; Treumann, R.A.; Berthomier, M.; Carlson, C.W.; McFadden, J.P.; Roth, I.: Modulated electron-acoustic waves in auroral density cavities: FAST observations. Geophys. Res. Lett. 26, 2629 (1999). https://doi.org/10.1029/1999GL900462

    Article  Google Scholar 

  22. Gary, S.P.: Electron/electron acoustic instability. Phys. Fluids 30(9), 2745–2749 (1987). https://doi.org/10.1063/1.866040

    Article  Google Scholar 

  23. Sittler, E.C.; Ogilvie, K.W.; Scudder, J.D.: Survey of low energy plasma electrons in Saturn’s magnetosphere: Voyagers 1 and 2. J. Geophys. Res. 88(A11), 8847–8870 (1983). https://doi.org/10.1029/JA088iA11p08847

    Article  Google Scholar 

  24. Young, D.T.; et al.: Composition and dynamics of plasma in Saturn’s magnetosphere. Science 307, 1262–1266 (2005). https://doi.org/10.1126/science.1106151

  25. Barbosa, D.D.; Kurth, W.S.: On the generation of plasma waves in Saturn’s inner magnetosphere. J. Geophys. Res. 98(A6), 9351–9356 (1993). https://doi.org/10.1029/93JA00477

    Article  Google Scholar 

  26. Cairns, R.A.; Mamun, A.A.; Bingham, R.; Bostrom, R.; Dendy, R.O.; Nairn, C.M.C.; Shukla, P.K.: Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 2709 (1995). https://doi.org/10.1029/95GL02781

    Article  Google Scholar 

  27. Dovner, P.O.; Eriksson, A.I.; Bostrom, R.; Holback, B.: Freja multiprobe observations of electrostatic solitary structures. Geophys. Res. Lett. 21, 1827 (1994). https://doi.org/10.1029/94GL00886

    Article  Google Scholar 

  28. Bostrom, R.: Observations of weak double layers on auroral field lines. IEEE Trans. Plasma Sci. 20, 756 (1992). https://doi.org/10.1109/27.199524

    Article  Google Scholar 

  29. Rehman, A.U.; Ahmad, M.; Shahzad, Muhammad Ahsan: Revisiting some analytical and numerical interpretations of Cairns and Kappa-Cairns distribution functions. Phys. Plasmas. 27, 100901 (2020). https://doi.org/10.1063/5.0018906

    Article  Google Scholar 

  30. Bezzerides, B.; Forslund, D.W.; Lindman, E.L.: Existence of rarefaction shocks in a laser-plasma corona. Phys. Fluids 21, 2179 (1978). https://doi.org/10.1063/1.862176

    Article  MathSciNet  MATH  Google Scholar 

  31. Krall, N.A.; Trivelpiece, A.W.: Principles of Plasma Physics. McGraw Hill, New York (1973)

    Book  Google Scholar 

  32. Haq, R.; Hadi, F.; Ullah, Z.; Ahmad, Z.; Qamar, Anisa: Dust ion acoustic waves in non-thermal Cairns bi-Maxwellian plasma. Contrib. Plasma Phys. 61, 202000216 (2021). https://doi.org/10.1002/ctpp.202000216

    Article  Google Scholar 

  33. Fried, B.D.; Conte, S.D.: The Plasma Dispersion Function. Academic press, New York (1961)

    Google Scholar 

  34. Quanming, Lu.; Wang, Shui; Dou, Xiankang: Electrostatic waves in an electron-beam plasma system. Phys. Plasmas 12, 072903 (2005). https://doi.org/10.1063/1.1951367

    Article  Google Scholar 

  35. Rehman, A.; Lee, J.K.: Electron acoustic waves in a plasma with a q-nonextensive distribution of electrons. Phys. Plasmas 25, 022107 (2018). https://doi.org/10.1063/1.5012044

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally in writing and preparing this manuscript.

Corresponding author

Correspondence to U. Zakir.

Ethics declarations

Conflicts of interest

The author declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, H., Zakir, U., Hadi, F. et al. The Study of Electron Acoustic Waves (EAWs) in Non-thermal Plasma. Arab J Sci Eng 48, 835–843 (2023). https://doi.org/10.1007/s13369-022-07043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07043-6

Keywords

Navigation