Skip to main content

Advertisement

Log in

Implications of Local Scale Meteorological Data on Radioactive Plume Dispersion and Dose Delivery for a Hypothetical Severe Accident at PARR-1

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An assessment of radiological risk for the Pakistan Research Reactor (PARR-1) has been conducted using International Radiological Assessment System (InterRAS) code. The radiological risk assessment has been estimated by considering a hypothetical accident at PARR-1. The available nuclide for the hottest fuel rods has been determined by the depletion calculation of fuel using the ORIGEN 2.2 code. This work is focused on the implications of local metrological data and its use in decision-making to take urgent protective actions during the early phase of a nuclear emergency. The hourly meteorological ground-based data covering 3 years for Islamabad, Pakistan, has been analyzed and used to estimate the radiation doses for a hypothetical accident at PARR-1. A segmented Gaussian approach has been used to consider the variation in meteorological data. The direction, trajectory, maximum ground deposition, and the total effective dose equivalent (TEDE) corresponding to variable atmospheric stability classification, wind speed, and metrological conditions have been estimated. Results indicate that the differences in radiation doses at the same location for the same source term is due to the difference in the meteorological conditions. The maximum TEDE has been calculated as 6.90 × 103 mSv and 6.70 × 103 mSv at the distance of 0.1 km, with the maximum seasonal wind speed of 11.3 m s−1 and average seasonal wind speed of 3.3 m s−1 respectively. The maximum TEDE of 6.90 Sv has been evaluated for atmospheric stability class D. The radiological doses are less than ten mSv for all the classes and wind speed. The maximum dose has been found to be limited to less than 1.0 km from the point of release. Thus, at a distance of 0.75 km, the TEDE falls below the IAEA generic criteria of 100 mSv, established to take early protective and response measures in case of a nuclear or radiological emergency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bijloos, G., et al.: Parametrization of homogeneous forested areas and effect on simulated dose rates near a nuclear research reactor. J. Environ. Radioact. 225, 106445 (2020). https://doi.org/10.1016/j.jenvrad.2020.106445

    Article  Google Scholar 

  2. Bektaş, S.; Lüle, S.Ş: An integrated method for atmospheric dispersion and corresponding risks: application to ITU TRIGA Mark II research reactor. Prog. Nucl. Energy. 143, 104039 (2022). https://doi.org/10.1016/j.pnucene.2021.104039

    Article  Google Scholar 

  3. Sato, Y., et al.: A model intercomparison of atmospheric 137Cs concentrations from the Fukushima Daiichi Nuclear Power Plant accident, phase III: Simulation with an identical source term and meteorological field at 1-km resolution. Atmos. Environ. X(7), 100086 (2020). https://doi.org/10.1016/j.aeaoa.2020.100086

    Article  Google Scholar 

  4. Leadbetter, S.J., et al.: Ranking uncertainties in atmospheric dispersion modelling following the accidental release of radioactive material. Radioprotection 55(HS1), S51–S55 (2020). https://doi.org/10.1051/radiopro/2020012

    Article  Google Scholar 

  5. Leelőssy, Á.; Lagzi, I.; Kovács, A.; Mészáros, R.: A review of numerical models to predict the atmospheric dispersion of radionuclides. J. Environ. Radioact 182, 20–33 (2018). https://doi.org/10.1016/j.jenvrad.2017.11.009

    Article  Google Scholar 

  6. Aly, A.I.M., et al.: Dispersion modeling: methodology and new trends. Arab J. Nucl. Sci. Appl. 94(1), 36–45 (2016)

    Google Scholar 

  7. Leelőssyet, Á., et al.: Dispersion modeling of air pollutants in the atmosphere: a review. Cent. Eur. J. Geosci. 6(3), 257–278 (2014). https://doi.org/10.2478/s13533-012-0188-6

    Article  Google Scholar 

  8. Benamrane, Y., et al.: Chernobyl and Fukushima nuclear accidents: what has changed in the use of atmospheric dispersion modeling. J. Environ. Radioact. 126, 239–252 (2013). https://doi.org/10.1016/j.jenvrad.2013.07.009

    Article  Google Scholar 

  9. Ahangari, R.; Noori-Kalkhoran, O.: A study of the protective actions for a hypothetical accident of the Bushehr nuclear power plant at different meteorological conditions. Radiat. Environ. Biophys. 58, 77–285 (2019)

    Article  Google Scholar 

  10. Aly, A.I.M., et al.: Assessment of dispersion characteristics and radiation doses consequences of a postulated accident at a proposed nuclear power plant. Eur. J. Acad. Res. V 10, 5887–5901 (2018)

    Google Scholar 

  11. Aliyu, A.S., et al.: Assessment of potential human health and environmental impacts of a nuclear power plant (NPP) based on atmospheric dispersion modelling. Atmosfera 28(1), 13–26 (2018)

    Article  Google Scholar 

  12. Yoshikane, T.; Yoshimura, K.: Dispersion characteristics of radioactive materials estimated by wind patterns. Sci. Rep. 8, 9926 (2018). https://doi.org/10.1038/s41598-018-27955-4

    Article  Google Scholar 

  13. Chen, S., et al.: The assessment and comparisons of RASCAL and EPZDose on atmospheric dispersion and dose consequences in radioactive material release accidents. In: EAFORM2017, 6th East Asia Forum on Radwaste Management Conference, 27–29November (2017)

  14. Hussain, M., et al.: Estimation of intervention distances for urgent protective actions using comparative approach of MACCS and InterRAS. Sci. Technol. Nucl. Install. (2014). https://doi.org/10.1155/2014/874134

    Article  Google Scholar 

  15. Korsakissok, I., et al.: Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident: a local-scale simulation and sensitivity study. Atmos. Environ. 70, 267–279 (2013)

    Article  Google Scholar 

  16. Veleva, B., et al.: The Bulgarian Emergency Response System for dose assessment in the early stage of accidental releases to the atmosphere. J. Environ. Radioact. 100, 151–156 (2009)

    Article  Google Scholar 

  17. Jeong, J.; Jung, W.: The estimation of early health effects for different combinations of release parameters and meteorological data. J. Korean Nucl. Soc. 33(6), 557–565 (2001). https://doi.org/10.1016/j.anucene.2010.03.007

    Article  Google Scholar 

  18. Shamsuddin, S.D., et al.: Radioactive dispersion analysis for hypothetical nuclear power plant (NPP) candidate site in Perak state, Malaysia. EPJ Web Conf. 156, 00009 (2017)

    Article  Google Scholar 

  19. Foudil, Z., et al.: Estimating of core inventory, source term and doses results for the NUR research reactor under a hypothetical severe accident. Prog. Nucl. Energy. 100, 365–372 (2017). https://doi.org/10.1016/j.pnucene.2017.07.013

    Article  Google Scholar 

  20. Şahin, S.; Ali, M.: Emergency planning zones estimation for Karachi-2 and Karachi-3 nuclear power plants using Gaussian puff model. Sci. Technol. Nucl. Install. (2016). https://doi.org/10.1155/2016/8549498

    Article  Google Scholar 

  21. Hussain, M. et al.: Estimation of Emergency Planning Zones (EPZs) for nuclear research reactor using plume dispersion code. In: Proceedings of the 2012 20th International Conference on Nuclear Engineering collocated with the ASME 2012 Power Conference ICONE20-POWER2012 July 30–August 3, 2012, Anaheim, CA, USA. https://doi.org/10.1115/ICONE20-POWER2012-54964

  22. Jeong, H.J., et al.: Radiological risk assessment for an urban area: focusing on an air contamination event. Ann. Nucl. Energy. 37, 791–797 (2010)

    Article  Google Scholar 

  23. Thiessen, K.M., et al.: Modeling the long-term consequences of a hypothetical dispersal of radioactivity in an urban area including remediation alternatives. J. Environ. Radioact 100, 445–455 (2009). https://doi.org/10.1016/j.jenvrad.2009.02.003

    Article  Google Scholar 

  24. Cheng, Y.H., et al.: Development of accident dose consequences simulation software for nuclear emergency response applications. Ann. Nucl. Energy 35, 917–926 (2008). https://doi.org/10.1016/j.anucene.2007.09.001

    Article  Google Scholar 

  25. Raza, S.S., et al.: Atmospheric dispersion modeling for an accidental release from the Pakistan Research Reactor-1 (PARR-1). Ann. Nucl. Energy 32, 1157–1166 (2005). https://doi.org/10.1016/j.anucene.2005.03.008

    Article  Google Scholar 

  26. IAEA: Preparedness and Response for a Nuclear or Radiological Emergency. IAEA GSR Part 7. International Atomic Energy Agency, Vienna (2015)

    Google Scholar 

  27. IAEA: Arrangements for Preparedness for a Nuclear or Radiological Emergency, Safety Guide No. GS-G-2.1. International Atomic Energy Agency, Vienna (2007)

    Google Scholar 

  28. Hamid, T.: Reactor Kinetics Parameters as a Function of Fuel Burnup, PIEAS-445. Reactor Analysis Group, PIEAS, Islamabad (1999)

    Google Scholar 

  29. Bokhari, I.H. et al.: Thermal hydraulics and safety analyses for Pakistan Research Reactor-1 IAEA (1999). http://inis.iaea.org/search/search.aspx?orig_q=RN:35015936

  30. Ali, M.R., et al.: Monte Carlo modeling of the Pakistan Research Reactor-1 (PARR-1). Ann. Nucl. Energy 87, 584–590 (2016). https://doi.org/10.1016/j.anucene.2015.10.015

    Article  Google Scholar 

  31. Ullah, S., et al.: Source term evaluation for the upgraded LEU Pakistan Research Reactor-1 under severe accidents. Nucl. Eng. Des. 240, 3740–3750 (2010). https://doi.org/10.1016/j.nucengdes.2010.08.017

    Article  Google Scholar 

  32. Mahmood, T., et al.: Performance evaluation/analysis of Pakistan Research Reactor-1 (PARR-1) current core configuration. Prog. Nucl. Energy 53, 729–735 (2011). https://doi.org/10.1016/j.pnucene.2011.04.003

    Article  Google Scholar 

  33. Shaukat, N., et al.: Optimization of core reload pattern for PARR-1 using evolutionary techniques. Nucl. Eng. Des. 240, 2831–2835 (2010). https://doi.org/10.1016/j.nucengdes.2010.06.042

    Article  Google Scholar 

  34. Croff, A.G.: A User’s Manual for The ORIGEN2 Computer Code, ORNL/TM-7175 (CCC-371). Oak Ridge National Laboratory, Oak Ridge, TN (1980)

    Google Scholar 

  35. Croff, A.G.: ORIGEN2: A versatile computer code for calculating the nuclide compositions and characteristics of nuclear materials. Nucl. Technol. 62(3), 335–352 (1983). https://doi.org/10.13182/NT83-1

    Article  Google Scholar 

  36. Junfeng, L.; Zhongqi, S.: Introduction and use of InterRAS. Nucl. Eng. Technol. 23(1), 84–87 (2002)

    Google Scholar 

  37. Ramsde et al.: User Manual RASCAL Code 3.0 (2013)

  38. IAEA-TECDOC, IAEA: 955: Generic Assessment Procedures for Determining Protective Actions during a Reactor Accident. IAEA, Vienna (1997)

    Google Scholar 

  39. Sehgal, B.R.: Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology. Academic Press, Cambridge, MA (2011)

    Google Scholar 

  40. PAKMET: Pakistan Meteorological Department (PAKMET) hourly data for the years 2019–2021 for Islamabad, Pakistan (2021)

  41. World Weather: Weather in Islamabad (2022). https://world-weather.info/forecast/pakistan/islamabad. Access on April 20th

  42. WorldWeatherOnline. Islamabad Climate Weather Averages (2022). https://www.worldweatheronline.com/islamabad-weather-averages/islamabad/pk.aspx. Access on 20 April 2022

  43. Ur Rehman, H., et al.: Environment friendly energy cooperation in neighboring buildings: a transformed linearization approach. Energies 15(3), 1160 (2022). https://doi.org/10.3390/en15031160

    Article  Google Scholar 

  44. Mehboob, K.: Source term evaluation of a pressurized water reactor under different severe accidents. Ph.D. Thesis, Harbin Engineering university (哈尔滨工程大学), Harbin China (2012)

  45. Mehboob, K.; Xinrong, C.: Source term evaluation of two loop PWR under hypothetical severe accidents. Ann. Nucl. Energy 50, 271–284 (2012)

    Article  Google Scholar 

  46. Mehboob, K.; Xinrong, C.: Source term evaluation of two loop PWR under hypothetical severe accidents. Ann. Nucl. Energy. 50, 271–284 (2012)

    Article  Google Scholar 

  47. Soffer, L., et al.: Accident source terms for light-water nuclear power plants. NUREG-1465. US Nuclear Regulatory Commission (1995)

  48. USNRC: Alternative radiological source terms for evaluating design basis accidents at nuclear power reactors. Regul. Guide 1, 183 (2000)

    Google Scholar 

  49. Pasquill, F.: The estimation of the dispersion of windborne material. Meteorol. Mag. 90, 33–49 (1961)

    Google Scholar 

  50. USEPA: Meteorological Monitoring Guidance for Regulatory Modeling Applications, EPA-454/R-99-005 (2000)

  51. ICRP: Low-dose extrapolation of radiation-related cancer risk. ICRP Publication 99. Ann. ICRP 35(4), 1–1400 (2005)

    Google Scholar 

  52. Sobue, T.: Scientific approach to radiation-induced cancer risk, influence on environment and health of radiation. Fukushima J. Med. Sci. 57(2), 90–92 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was funded by the Deanship of Scientific Research (DSR), King Abdul Aziz University, Jeddah, under grant number (D-114-135-1443). Therefore, the authors acknowledge the DSR for technical and financial support. The authors also acknowledge the support provided by King Abdullah City for Atomic and Renewable Energy (K.A. CARE) under K.A. CARE-King Abdulaziz University Collaboration Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Mehboob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M., Mehboob, K., Ilyas, S.Z. et al. Implications of Local Scale Meteorological Data on Radioactive Plume Dispersion and Dose Delivery for a Hypothetical Severe Accident at PARR-1. Arab J Sci Eng 48, 739–755 (2023). https://doi.org/10.1007/s13369-022-06998-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06998-w

Keywords

Navigation