Skip to main content

Advertisement

Log in

Desertification Caused by Embankment Construction in Permafrost Environment on the Qinghai-Tibetan Plateau

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Desertification is a process of land degradation embodied in soil water reduction, soil deterioration and vegetation degradation. As an important factor to evaluate the desertification degree, the water content of shallow soil will infiltrate downward when permafrost degrades on the Qinghai-Tibet Plateau (QTP). With the development of transportation facilities on the QTP, embankment construction, which will directly change the surface cover and reduces the water content of shallow soil by degrading the permafrost. In this study, an embankment construction in the permafrost region of the QTP was selected and a hydro-thermo-vapor coupling model for the embankment-permafrost system was established. The mechanism and process of desertification caused by permafrost degradation were analyzed by the variations of geotemperature and soil water. The results show that: (1) embankment construction has increased the heat flowing into the ground, warmed the underlying permafrost and deepened the permafrost table by more than 10 m during 50 years. (2) Accompanied with the permafrost degradation, the shallow soil water migrates downward and accumulates near the deepening permafrost table, showing a funnel-shaped distribution. The average water content of shallow soil under the changed surface has decreased by 5–6% during 50 years, indicating the intensification of desertification. (3) Desertification and permafrost degradation on the QTP is interconnected by the redistribution of soil water. Desertification and permafrost degradation are the mutual promotion process on the QTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Amin, A.A.: The extent of desertification on Saudi Arabia. Env. Geol. 46, 22–31 (2004)

    Google Scholar 

  2. Wang, H.; Guo, Z.; Xu, X.; Tian, G.; Ji, Z.: Response of vegetation and soils to desertification of alpine meadow in the upper basin of the Yellow River, China. New Zeal. J. Agric. Res. 50(4), 491–501 (2010)

    Article  Google Scholar 

  3. Jiang, L.; Jiapaer, G.; Bao, A.; Kurban, A.; Guo, H.; Zheng, G.; De Maeyer, P.: Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 104, 195–208 (2019)

    Article  Google Scholar 

  4. Zhang, G.; Biradar, C.; Xiao, X.; Dong, J.; Zhou, Y.; Qin, Y.; Zhang, Y.; Liu, F.; Ding, M.; Thomas, R.: Exacerbated grassland degradation and desertification in Central Asia during 2000–2014. Eco. Appl. 28(2), 442 (2017)

    Article  Google Scholar 

  5. Belaroui, K.; Djediai, H.; Megdad, H.: The influence of soil, hydrology, vegetation and climate on desertification in El-Bayadh region (Algeria). Desalin. Water Treat. 52(10–12), 2144–2150 (2014)

    Article  Google Scholar 

  6. Sharma, S.; Hamal, H.; Khadka, N.; Ali, M.; Subedi, M.; Hussain, G.; Ehsan, M.; Saeed, S.; Dawadi, B.: Projected drought conditions over southern slope of the central himalaya using CMIP6 models. Earth Syst. Environ. 5, 849–859 (2021)

    Article  Google Scholar 

  7. Berdimbetov, T.; Ilyas, S.; Ma, Z.; Bilal, M.; Nietullaeva, S.: Climatic change and human activities link to vegetation dynamics in the Aral Sea Basin using NDVI. Earth Syst. Environ. 5, 303–318 (2021)

    Article  Google Scholar 

  8. Huang, J.; Zhang, G.; Zhang, Y.; Guan, X.; Guo, R.: Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 31(11), 1380–1391 (2020)

    Article  Google Scholar 

  9. D’Odorico, P.; Bhattachan, A.; Davis, K.; Ravi, S.; Runyan, C.; Christiane, W.: Global desertification: Drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013)

    Article  Google Scholar 

  10. Geist, H.; Lambin, E.: Dynamic causal patterns of desertification. Bioscience 54(9), 817–829 (2004)

    Article  Google Scholar 

  11. Zhang, C.; Li, Q.; Shen, Y.; Zhou, N.; Wang, X.; Li, J.; Jia, W.: Monitoring of aeolian desertification on the Qinghai-Tibetan Plateau from the 1970s to 2015 using Landsat images. Sci. Total Environ. 619, 1648–1659 (2018)

    Article  Google Scholar 

  12. Li, Q.; Zhang, C.; Shen, Y.; Jia, W.; Li, J.: Developing trend of aeolian desertification in China’s Tibet Autonomous Region from 1977 to 2010. Environ. Earth Sci. 75(10), 1–12 (2016)

    Article  Google Scholar 

  13. Yao, T.; Thompson, L.; Yang, W.: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2(9), 663–667 (2012)

    Article  Google Scholar 

  14. Mandal, S.; Sharma, M.: Spatial changes in glaciers between 1965 and 2018 in Tirungkhad Watershed, Upper Sutlej Basin, Himachal Pradesh. Earth Syst. Environ. 4, 427–438 (2020)

    Article  Google Scholar 

  15. Yao, T.; Wu, F.; Ding, L.; Sun, J.; Zhu, L.; Piao, S.; Deng, T.; Ni, X.; Zheng, H.; Ouyang, H.: Multispherical interactions and their effects on the Tibetan Plateau’s earth system: a review of the recent researches. Natl. Sci. Rev. 2(4), 468–488 (2015)

    Article  Google Scholar 

  16. Li, Q.; Zhang, C.; Shen, Y.; Jia, W.; Li, J.: Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. CATENA 147, 789–796 (2016)

    Article  Google Scholar 

  17. Xue, X.; Guo, J.; Han, B.; Sun, Q.; Liu, L.: The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau. Geomorphology 108(3–4), 182–190 (2009)

    Article  Google Scholar 

  18. Hu, G.; Dong, Z.; Lu, J.; Yan, C.; Wei, Z.: Land desertification on monitoring in the source region of Yangtze river from 1975–2005 and the analysis of its causes. Arid Land Geogr. 34(02), 300–308 (2011)

    Google Scholar 

  19. Li, S.; Gao, S.; Yang, P.; Chen, H.: Some problems of freeze-thaw desertification in the Tibetan Plateau: a case study on the desertification regions of the western and northern plateau. J. Glaciol. Geocryol. 27(4), 476–485 (2005)

    Google Scholar 

  20. Yang, Z.; Gao, J.; Zhao, L.; Xu, X.; Ouyang, H.: Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau. Plant Soil 367(1–2), 687–700 (2013)

    Article  Google Scholar 

  21. Jin, X.; Jin, H.; Iwahana, G.; Sergey, S.; Luo, D.; Li, X.; Liang, S.: Impacts of climate-induced permafrost degradation on vegetation: a review. Adv. Clim. Chang. Res. 12(1), 29–47 (2021)

    Article  Google Scholar 

  22. Walvoord, M.; Kurylyk, B.: Hydrologic impacts of thawing permafrost: a review. Vadose Zone J. 15(6), 1–20 (2016)

    Article  Google Scholar 

  23. Wang, S.; Zhao, L.; Li, S.: Interaction between permafrost and desertification on the Qinghai-Tibet Plateau. J. Desert Res. 22(1), 33–39 (2002)

    Google Scholar 

  24. Yang, M.; Wang, S.; Yao, T.; Gou, X.; Lu, A.; Guo, X.: Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) plateau. Cold Reg. Sci. Technol. 39, 47–53 (2004)

    Article  Google Scholar 

  25. Hu, G.; Dong, Z.; Lu, J.; Yan, C.: The developmental trend and influencing factors of aeolian desertification in the Zoige Basin, eastern Qinghai-Tibet Plateau. Aeolian Res. 19(B), 275–281 (2015)

    Article  Google Scholar 

  26. Wang, Y.; Wang, G.; Chang, J.: Impacts of human activity on permafrost environment of the Tibetan Plateau. J. Glaciol. Geocryol. 26, 523–527 (2004)

    Google Scholar 

  27. Song, Y.; Jin, L.; Wang, H.: Vegetation changes along the Qinghai-Tibet Plateau engineering corridor since 2000 induced by climate change and human activities. Remote Sens. 10(1), 95 (2018)

    Article  Google Scholar 

  28. Ma, S.; Chen, G.; Peng, M.: Restoration processes of alpine grasslands in the soil pits along the Qinghai-Tibet Highway. J. Chin. Environ. Sci. 24(2), 188–191 (2004)

    Google Scholar 

  29. Wang, G.; Yao, J.; Guo, Z.; Cheng, G.: Changes of permafrost eco-environments under the influences of human activities, and their significance for the construction of the Qinghai-Tibet Railway. Chin. Sci. Bull. 49(15), 1556–1564 (2004)

    Google Scholar 

  30. Jin, H.; Yu, Q.; Wang, S.: Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Reg. Sci. Technol. 53(3), 317–333 (2008)

    Article  Google Scholar 

  31. Sun, Y.; Wang, J.; Han, Q.; Qu, J.; Zhang, K.; Tuo, W.; Zu, D.; Liao, K.: The alpine vegetation and soil characters and vegetation recovery along the Golmud-Anduo section of the Qinghai-Tibet railwat. J. Desert Res. 31(04), 894–905 (2011)

    Google Scholar 

  32. Xie, S.; Qu, J.; Liu, B.; Xu, X.: Advances in research on the sand hazards and its controls along the Qinghai-Tibet railway. J. Desert Res. 34(01), 42–48 (2014)

    Google Scholar 

  33. Xie, S.; Qu, J.; Lai, Y.; Pang, Y.: Formation mechanism and suitable controlling pattern of sand hazards at Honglianghe River section of QinghaiTibet Railway. Nat. Hazards 76, 855–871 (2015)

    Article  Google Scholar 

  34. Peng, H.; Ma, W.; Mu, Y.; Long, J.; Yuan, K.: Degradation characteristics of permafrost under the effect of climate warming and engineering disturbance along the Qinghai-Tibet Highway. Nat. Hazards 75(3), 2589–2605 (2015)

    Article  Google Scholar 

  35. Ma, W.; Mu, Y.; Zhang, J.; Yu, W.; Zhou, Z.; Chen, T.: Lateral thermal influence of roadway and railway embankments in permafrost zones along the Qinghai-Tibet Engineering Corridor. Transp. Geotech. 21(5), 100285 (2019)

    Article  Google Scholar 

  36. Jiang, G.; Wang, L.; Yun, H.; Gao, S.; Wu, Q.: Thermal influences of road engineering on permafrost underneath different surface condition in the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 173, 103028 (2020)

    Article  Google Scholar 

  37. Chen, L.; Yu, W.; Yang, C.; Yi, X.; Liu, W.: Conductivity of aeolian sand on the Tibet Plateau based on microstructure. J. Glaciol. Geocryol. 36, 1220–1226 (2014)

    Google Scholar 

  38. Lu, Y.; Yu, W.; Hu, D.; Liu, W.: Experimental study on the thermal conductivity of aeolian sand from the Tibetan Plateau. Cold Reg. Sci. Technol. 146, 1–8 (2018)

    Article  Google Scholar 

  39. Lin, Z.; Gao, Z.; Conductivity of aeolian sand on the Tibet Plateau based on microstructure, F.; Luo, J.; Yin, G.; Liu, M.; Fan, X.: High spatial density ground thermal measurements in a warming permafrost region, Beiluhe Basin, Qinghai-Tibet Plateau. Geomorphology 340, 1–14 (2019)

  40. Niu, F.; Gao, Z.; Lin, Z.; Luo, J.; Fan, X.: Vegetation influence on the soil hydrological regime in permafrost regions of the Qinghai-Tibet Plateau, China. Geoderma 354, 113892 (2019)

    Article  Google Scholar 

  41. Gao, Z.; Lin, Z.; Niu, F.: Soil water dynamics in the active layers under different land-cover types in the permafrost regions of the Qinghai-Tibet Plateau, China. Geoderma 364, 114176 (2020)

    Article  Google Scholar 

  42. Philip, J.; De Vries, D.: Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union 38(2), 222–232 (1957)

    Article  Google Scholar 

  43. Saito, H.; Simunek, J.; Mohanty, B.: Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone J. 5(2), 784–800 (2006)

    Article  Google Scholar 

  44. Bai, R.; Lai, Y.; Zhang, M.; Yu, F.: Theory and application of a novel soil freezing characteristic curve. Appl. Therm. Eng. 129, 1106–1114 (2018)

    Article  Google Scholar 

  45. Van Genuchten, M.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil. Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  46. Zhang, M.; Wen, Z.; Xue, K.; Cheng, L.; Li, D.: A coupled model for liquid water, water vapor and heat transport of saturated-unsaturated soil in cold regions: model formulation and verification. Environ. Earth Sci. 75, 1–19 (2016)

    Google Scholar 

  47. Yuan, C.; Yu, Q.; You, Y.; Guo, L.: Formation mechanism of longitudinal cracks in expressway embankments with inclined thermosyphons in warm and ice-rich permafrost regions. Appl. Therm. Eng. 133, 21–32 (2018)

    Article  Google Scholar 

  48. Zhu, L.: Study of the adherent layer on different types of ground in permafrost regions on the Qinghai-Xizang Plateau. J. Glaciol. Geocryol. 10(1), 8–14 (1988)

    Google Scholar 

  49. Mizoguchi, M.: Water Heat and Salt Transport in Freezing Soil. University of Tokyo, Bunkyo (1990)

    Google Scholar 

  50. You, Q.; Xue, X.; Peng, F.; Dong, S.; Gao, Y.: Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau. Agric. Forest Meteorol. 232, 48–65 (2017)

    Article  Google Scholar 

  51. Lai, Y.; Zhang, M.; Li, S.: Theory and application of cold regions engineering. Science Press, Beijing (2009)

    Google Scholar 

  52. Wen, Z.; Zhang, M.; Ma, W.; Niu, F.; Yu, Q.; Fan, Z.; Sun, Z.: Thermal-moisture dynamics of embankments with asphalt pavement in permafrost regions of central Tibetan Plateau. Eur. J. Environ. Civ. En. 19(4), 387–399 (2015)

    Article  Google Scholar 

  53. Wang, G.; Li, Y.; Wu, Q.; Wang, Y.: Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Sci. in China (Ser. D) 49, 1156–1169 (2006)

    Article  Google Scholar 

  54. Wang, L.; Jiang, G.; Fu, Z.; Liu, Y.; Gao, S.; Zhao, H.; Wu, Q.: A study on the hydrothermal regime of aeolian sand and the underlying soil in the frozen soil zone on the Qinghai-Tibetan Plateau. Agr. Forest Meteorol. 299, 108294 (2021)

    Article  Google Scholar 

  55. Ma, Q.; Luo, X.; Lai, Y.; Niu, F.; Gao, J.: Numerical investigation on thermal insulation layer of a tunnel in seasonally frozen regions. Appl. Therm. Eng. 138, 280–291 (2018)

    Article  Google Scholar 

  56. Pei, W.; Zhang, M.; Yan, Z.; Li, S.; Lai, Y.: Numerical evaluation of the cooling performance of a composite L-shaped two-phase closed thermosyphon (LTPCT) technique in permafrost regions. Sol. Energy 177(1), 22–31 (2019)

    Article  Google Scholar 

  57. Luo, X.; Yu, Q.; Ma, Q.; You, Y.; Wand, J.; Wang, S.: Evaluation on the stability of expressway embankment combined with L-shaped thermosyphons and insulation boards in warm and ice-rich permafrost regions. Transp. Geotech. 30, 100633 (2021)

    Article  Google Scholar 

  58. Wang, W.; Wang, Q.; Wang, G.; Jing, Z.: Effects of land degradation and rehabilitation on vegetation carbon and nitrogen content of alpine meadow in China. J. Plant Ecol. 31(6), 1073–1078 (2007)

    Article  Google Scholar 

  59. He, Z.; Zhao, W.; Hu, L.; Chang, X.: The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: a case study in northwestern China’s Qilian Mountains. J. Hydrol. 420, 183–190 (2012)

    Article  Google Scholar 

  60. Lin, Z.; Gao, Z.; Fan, X.; Niu, F.; Luo, J.; Yin, G.; Liu, M.: Factors controlling near surface ground-ice characteristics in a region of warm permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Geoderma 376, 114510 (2020)

    Article  Google Scholar 

  61. Cheng, G.: The influence of local factor on distribution of permafrost and the revelation of design for Qinghai-Xizang Highway. Sci. China Ser. D 33(6), 602–607 (2003)

    Google Scholar 

  62. Lü, L.; Jin, H.; Wang, S.; Xue, X.; He, R.; Yu, S.: Dual influences of local environmental variables on ground temperatures on the interior-eastern Qinghai-Tibet Plateau (II): sand-layer and surface water bodies. J. Glaciol. Geocryol. 30(4), 546–555 (2008)

    Google Scholar 

  63. Wang, L.; Wu, Q.; Jiang, G.: The effect of desertification on frozen soil on the Qinghai-Tibet Plateau. Sci. Total Environ. 711, 134640 (2020)

    Article  Google Scholar 

  64. Zhou, Y.; Guo, D.; Qiu, G.; Cheng, G.; Li, S.: Geocryology in China. Science Press, Beijing (2002)

    Google Scholar 

  65. Fisher, J.; Estop-Aragones, C.; Thierry, A.; Charman, D.; Wolfe, S.; Hartley, I.; Murton, J.; Williams, M.; Phoenix, G.: The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Global Planet. Change 22, 3127–3140 (2016)

    Article  Google Scholar 

  66. Jin, H.; Sun, L.; Wang, S.; He, R.; Lü, L.; Yu, S.: Dual influences of local environmental variables on ground temperature on the interior-eastern Qinghai-Tibet Plateau (I): vegetation and snow cover. J. Glaciol. Geocryol. 30(4), 535–545 (2008)

    Google Scholar 

  67. Yi, S.; Woo, M.; Arain, M.: Impacts of peat and vegetation on permafrost degradation under climate warming. Geophy. Res. Lett. 34(16), 1445–1461 (2007)

    Article  Google Scholar 

  68. Wu, Q.; Yu, W.; Jin, H.: No protection of permafrost due to desertification on the Qinghai-Tibet Plateau. Sci. Lett. 7(1), 905 (2017)

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (No. 2019QZKK0905), Natural Science Foundation of Guangdong Province (No. 2020A1515010745), Open Fund of the State Key Laboratory of Frozen Soil Engineering (No. SKLFSE201810), Science and Technology Projects in Guangzhou (No. 202102020486) and Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (No. 2021B1212040003).

Author information

Authors and Affiliations

Authors

Contributions

TL Methodology; Software; Validation; Writing -original draft. XL Methodology; Review and editing, Formal analysis. QM Conceptualization; Methodology; Supervision; Validation; Writing review and editing. WJ Methodology; Writing review and editing. HX Conceptualization; Review and editing, Formal analysis.

Corresponding author

Correspondence to Qinguo Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, T., Luo, X., Ma, Q. et al. Desertification Caused by Embankment Construction in Permafrost Environment on the Qinghai-Tibetan Plateau. Arab J Sci Eng 48, 583–599 (2023). https://doi.org/10.1007/s13369-022-06988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06988-y

Keywords

Navigation