Skip to main content
Log in

A Conceptual Comparison of Dragonfly Algorithm Variants for CEC-2021 Global Optimization Problems

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Since the past few years, several metaheuristic algorithms, inspired by the natural processes, have been introduced to solve different complex optimization problems. Studying and comparing the convergence, computational burden and statistical significance of those metaheuristics are helpful for future algorithmic development and their applications. This paper focuses on comparing the optimization performance of classical dragonfly algorithm (DA) and its seven different variants, i.e., hybrid memory-based dragonfly algorithm with differential evolution (DADE), quantum-behaved and Gaussian mutational dragonfly algorithm (QGDA), memory-based hybrid dragonfly algorithm (MHDA), chaotic dragonfly algorithm (CDA), biogeography-based Mexican hat wavelet dragonfly algorithm (BMDA), hybrid Nelder–Mead algorithm and dragonfly algorithm (INMDA) and hybridization of dragonfly algorithm and artificial bee colony (HDA) while solving 80 CEC-2021 benchmark problems. It is observed that the convergence rates of different variants of DA algorithm vary, and the corresponding computational times for such variations are also evaluated. This paper finally ranks DA and its variants according to their convergence efficiency and Friedman test. The DADE, QGDA, BMDA and DA evolve out as the most efficient algorithms for solving the considered CEC-2021 benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bolaji, A.L.; Al-Betar, M.A.; Awadallah, M.A.; Khader, A.T.; Abualigah, L.M.: A comprehensive review: Krill herd algorithm (kh) and its applications. Appl. Soft Comput. 49, 437–446 (2016)

    Article  Google Scholar 

  2. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977)

    Article  Google Scholar 

  3. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Koziel, S.; Yang, X.-S.: Computational Optimization, Methods and Algorithms. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  5. Abualigah, L.M.; Khader, A.T.; Al-Betar, M.A.; Alyasseri, Z.A.A.; Alomari, O.A.; Hanandeh, E.S.: Feature selection with β-hill climbing search for text clustering application. In: Proc. of the Palestinian International Conference on Information and Communication Technology, Gaza, Palestine, pp. 22–27 (2017)

  6. Abualigah, L.: Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput. Appl. 33, 2949–2972 (2021)

    Article  Google Scholar 

  7. Abdelmadjid, C.; Mohamed, S.-A.; Boussad, B.: CFD analysis of the volute geometry effect on the turbulent air flow through the turbocharger compressor. Energy Procedia 36, 746–755 (2013)

    Article  Google Scholar 

  8. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016)

    Article  Google Scholar 

  9. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M.: Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110, 151–166 (2012)

    Article  Google Scholar 

  10. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)

    Article  Google Scholar 

  11. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  12. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)

    Article  MathSciNet  Google Scholar 

  13. Mafarja, M.; Aljarah, I.; Heidari, A.A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S.: Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl.-Based Syst. 161, 185–204 (2018)

    Article  Google Scholar 

  14. Hussain, I.; Ullah, M.; Ullah, I.; Bibi, A.; Naeem, M.; Singh, M.; Singh, D.: Optimizing energy consumption in the home energy management system via a bio-inspired dragonfly algorithm and the genetic algorithm. Electronics 9(3), 406–417 (2020)

    Article  Google Scholar 

  15. Palappan, A.; Thangavelu, J.: A new meta heuristic dragonfly optimizaion algorithm for optimal reactive power dispatch problem. Gazi Univ. J. Sci. 31(4), 1107–1121 (2018)

    Google Scholar 

  16. Panagant, N.; Pholdee, N.; Bureerat, S.; Yildiz, A.R.; Mirjalili, S.: A comparative study of recent multi-objective metaheuristics for solving constrained truss optimisation problems. Archiv. Comput. Methods Eng. 28, 4031–4047 (2021)

    Article  Google Scholar 

  17. Gaddala, K.; Raju, P.S.: Optimal UPQC location in power distribution network via merging genetic and dragonfly algorithm. Evolut. Intell. (2020). https://doi.org/10.1007/s12065-020-00364-1

    Article  Google Scholar 

  18. Kouba, N.E.Y.; Menaa, M.; Hasni, M.; Boudour, M.: A novel optimal combined fuzzy PID controller employing dragonfly algorithm for solving automatic generation control problem. Electric Power Compon. Syst. 46(19–20), 2054–2070 (2018)

    Article  Google Scholar 

  19. Zhang, Z.; Hong, W.C.: Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support vector regression with quantum-based dragonfly algorithm. Nonlinear Dyn. 98(2), 1107–1136 (2019)

    Article  Google Scholar 

  20. Sun, J.; Zhao, B.; Gao, D.; Xu, L.: Fuzzy surfacelet neural network evaluation model optimized by adaptive dragonfly algorithm for pipeline network integrity management. Appl. Soft Comput. 113, 107862 (2021)

    Article  Google Scholar 

  21. Zhao, B.; Ren, Y.; Gao, D.; Xu, L.: Prediction of service life of large centrifugal compressor remanufactured impeller based on clustering rough set and fuzzy Bandelet neural network. Appl. Soft Comput. J. 78, 132–140 (2019)

    Article  Google Scholar 

  22. Zhao, B.; Ren, Y.; Gao, D.; Xu, L.: Performance ratio prediction of photovoltaic pumping system based on grey clustering and second curvelet neural network. Energy 171, 360–371 (2019)

    Article  Google Scholar 

  23. Zhao, B.; Ren, Y.; Gao, D.; Xu, L.; Yuanyuan Zhang, Y.: Energy utilization efficiency evaluation model of refining unit based on Contourlet neural network optimized by improved grey optimization algorithm. Energy 185, 1032–1044 (2019)

    Article  Google Scholar 

  24. Debnath, S.; Baishya, S.; Sen, D.; Arif, W.: A hybrid memory-based dragonfly algorithm with differential evolution for engineering application. Eng. Comput. 37, 2775–2802 (2020)

    Article  Google Scholar 

  25. Yu, C.; Cai, Z.; Ye, X.; Wang, M.; Zhao, X.; Liang, G.; Chen, H.; Li, C.: Quantum-like mutation-induced dragonfly-inspired optimization approach. Math. Comput. Simul. 178, 259–289 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sree Ranjini, K.S.; Murugan, S.: Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Syst. Appl. 83, 63–78 (2017)

    Article  Google Scholar 

  27. Sayed, G.I.; Tharwat, A.; Hassanien, A.E.: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Appl. Intell. 49(1), 188–205 (2019)

    Article  Google Scholar 

  28. Shirani, M.R.; Safi-Esfahani, F.: BMDA: applying biogeography-based optimization algorithm and Mexican hat wavelet to improve dragonfly algorithm. Soft. Comput. 24(21), 15979–16004 (2020)

    Article  Google Scholar 

  29. Xu, J.; Yan, F.: Hybrid Nelder–Mead algorithm and dragonfly algorithm for function optimization and the training of a multilayer perceptron. Arab. J. Sci. Eng. 44(4), 3473–3487 (2019)

    Article  Google Scholar 

  30. Ghanem, W.A.; Jantan, A.: A cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptrons. Cogn. Comput. 10(6), 1096–1134 (2018)

    Article  Google Scholar 

  31. Wagdy, A.; Hadi, A.A.; Mohamed, A.K.; Agrawal, P.; Kumar, A.; Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2021 special session and competition on single objective bound constrained numerical optimization. Technical Report, Nanyang Technological University, Singapore (2021)

  32. Opara, K.R.; Hadi, A.A.; Mohamed, A.W.: Parametrized benchmarking: an outline of the idea and a feasibility study. In: Proc. of Genetic and Evolutionary Computation Conference, Cancún Mexico, pp. 197–198 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Chakraborty.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, M., Kalita, K., Jangir, P. et al. A Conceptual Comparison of Dragonfly Algorithm Variants for CEC-2021 Global Optimization Problems. Arab J Sci Eng 48, 1563–1593 (2023). https://doi.org/10.1007/s13369-022-06880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06880-9

Keywords

Navigation