Skip to main content
Log in

Heat and Mass Transfer of Dusty Casson Fluid over a Stretching Sheet

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Tiny particles in the Earth's atmosphere create dust that originates from various sources, including air pollution. The resulting dust contains numerous dust particles, and the size of these dust particles is sometimes homogeneous or irregular. The presence of dust in any kind of fluid in nature is a normal thing and this matter can no longer be ignored. Considering this fact, heat and mass transfer of the dusty Casson fluid flow over a permeable stretching sheet is investigated incorporating heat dissipation, magnetic and radiative fields, heat source or sink, and the effect of temperature gradient referred to as Dufour effect and thermophoresis stated as Soret effect. In this research, similarity analysis is used to transform the nonlinear governing partial differential equations into a set of nonlinear ordinary differential equations (ODE). Then the nonlinear ODE systems have been formulated using the finite difference method with the central difference technique and then solved. In addition, a comparison with other research findings is presented, which yields a quantitatively good agreement. Results revealed that the Eckert number, surface temperature parameter, conduction-radiation parameter, and Dufour effect lead to a substantial increase in the fluid flow rate and fluid temperature, the temperature of the dust particles, and momentum and thermal boundary layers. The magnitude of the drag coefficient becomes stronger with the augmentation of the Hartmann number, the mass concentration of dust particles, and the suction parameter. Moreover, an increase in the surface temperature parameter, conduction-radiation parameter, mass concentration of dust particles, and non-Newtonian Casson fluid parameter enhances the local Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

B 0 :

Magnetic field parameter

\(C\) :

The concentration of the fluid

\(C_{p}\) :

Specific heat of the fluid

\(C_{m}\) :

Specific heat of the dust particles

\(C_{s}\) :

Concentration susceptibility

\(C_{\infty }\) :

Concentration outside the boundary layer

\(D_{m}\) :

Chemical molecular diffusivity

\(D_{f}\) :

Dufour number

\(g\) :

Gravitational acceleration

\({\text{Gr}}_{T}\) :

Local Grashof number for temperature

\({\text{Gr}}_{C}\) :

Local Grashof number for concentration

\({\text{Ha}}\) :

Hartmann number

\(K\) :

Stokes drag coefficient

\(\overline{K}\) :

Permeability constant

\(l\) :

Dust particle mass concentration

\({\text{Le}}\) :

Lewis number

\(N\) :

The number of dust particles

\(N_{1}\) :

Radiation parameter

\({\text{Pr}}\) :

Prandtl number

\(Q\) :

Volumetric rate of heat generation

\(q_{r}\) :

Radiative heat flux

\(R\) :

Suction/Injection parameter

\(R_{d}\) :

Non-dimensional Radiative heat flux

\(q_{r}\) :

Radiative heat flux

S r :

Soret number

\(T\) :

The temperature of the fluid

\(T_{0}\) :

Mean fluid temperature

\(T_{\infty }\) :

The temperature of the fluid outside the boundary layer

\(T_{p}\) :

The temperature of the dust particles

\(u,v\) :

Fluid velocity components in \(x,y\) directions

\(u_{p} ,v_{p}\) :

Velocity components of dust particles in \(x,y\) directions

\(x,y\) :

Cartesian coordinate system

\(\overline{\kappa }\) :

Thermal diffusion ratio

\(\kappa\) :

Thermal conductivity of the fluid

\( \kappa ^{\prime } \) :

Permeability constant

\(\kappa ^{\prime\prime}\) :

Rate of chemical reaction

\(\kappa_{1}\) :

Mean absorption coefficient

\(\sigma\) :

Electric conductivity

\(\sigma^{*}\) :

Stefan-Boltzmann constant

\(\gamma_{1}\) :

Chemical reaction parameter

\(\rho\) :

The density of the fluid

\(\rho_{p}\) :

The density of the dust particles

\(\lambda\) :

Heat generation or absorption

\(\theta\) :

Non-dimensional temperature for fluid

\(\theta_{p}\) :

Non-dimensional temperature for dust particles

\(\varphi\) :

Non-dimensional concentration for fluid

\(\varphi_{p}\) :

Non-dimensional temperature for dust particles

\(\beta\) :

Non-Newtonian Casson parameter

\(\beta_{T}\) :

Volumetric coefficient of thermal expansion

\(\beta_{C}\) :

Coefficient of concentration

\(\tau_{T}\) :

The relaxation time of the dust particles temperature

\(\tau_{v}\) :

The relaxation time of the dust particles velocity

References

  1. Iasiello, M.; Vafai, K.; Andreozzi, A.; Bianco, N.: Analysis of non-Newtonian effects within an aorta-iliac bifurcation region. J. Biomech. 64, 153–163 (2017)

    Article  Google Scholar 

  2. Iasiello, M.; Vafai, K.; Andreozzi, A.; Bianco, N.: Analysis of non-Newtonian effects on low-density lipoprotein accumulation in an artery. J. Biomech. 49(9), 1437–1446 (2016)

    Article  Google Scholar 

  3. Abbasian, M.; Shams, M.; Valizadeh, Z.; Moshfegh, A.; Javadzadegan, A.; Cheng, S.: Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation. Comput. Methods Programs Biomed. 186, 105185 (2020)

    Article  Google Scholar 

  4. Iasiello, M.; Vafai, K.; Andreozzi, A.; Bianco, N.: Hypo-and hyperthermia effects on LDL deposition in a curved artery. Comput. Therm. Sci. Int. J. 11(1–2), 95–103 (2019)

    Article  Google Scholar 

  5. Vazifehshenas, F.H.; Bahadori, F.: Investigation of Soret effect on drug delivery in a tumor without necrotic core. J. Taiwan Inst. Chem. Eng. 102, 17–24 (2019)

    Article  Google Scholar 

  6. Mustafa, M.; Hayat, T.; Pop, I.; Aziz, A.: Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate. Heat Transf. Asian Res. 40(6), 563–576 (2011). https://doi.org/10.1002/htj.20358

    Article  Google Scholar 

  7. Hayat, T.; Shehzad, S.A.; Alsaedi, A.: Soret and Dufour effects on magneto-hydrodynamic (MHD) flow of Casson fluid. Appl. Math. Mech. (English Edition) 33(10), 1301–1312 (2012). https://doi.org/10.1007/s10483-012-1623-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Hayat, T.; Shehzad, S.A.; Alsaedi, A.; Alhothuali, M.S.: Mixed convection stagnation point flow of Casson fluid with convective boundary conditions. Chin. Phys. Lett. 29(11), 114704 (2012). https://doi.org/10.1088/0256-307X/29/11/114704

    Article  Google Scholar 

  9. Qasim, M.; Noreen, S.: Heat transfer in the boundary layer flow of a Casson fluid over a permeable shrinking sheet with viscous dissipation. Eur. Phys. J. Plus 129(7), 1–8 (2014). https://doi.org/10.1140/epjp/i2014-14007-5

    Article  Google Scholar 

  10. Megahed, A.M.: MHD viscous Casson fluid flow and heat transfer with second-order slip velocity and thermal slip over a permeable stretching sheet in the presence of internal heat generation/absorption and thermal radiation. Eur. Phys. J. Plus 130(81), 1–17 (2015). https://doi.org/10.1140/epjp/i2015-15081-9

    Article  Google Scholar 

  11. Ramesh, G.K.; Prasannakumara, B.C.; Gireesha, B.J.; Rashidi, M.M.: Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. J. Appl. Fluid Mech. 9(3), 1115–1122 (2016). https://doi.org/10.18869/acadpub.jafm.68.228.24584

    Article  Google Scholar 

  12. Biswas, R.; Mondal, M.; Sarkar, D.R.; Ahmmed, S.F.: Effects of radiation and chemical reaction on MHD unsteady heat and mass transfer of Casson fluid flow past a vertical plate. J. Adv. Math. Comput. Sci. 23(2), 1–16 (2017). https://doi.org/10.9734/JAMCS/2017/34292

    Article  Google Scholar 

  13. Shateyi, S.; Mabood, F.; Lorenzini, G.: Casson fluid flow: free convective heat and mass transfer over an unsteady permeable stretching surface considering viscous dissipation. J. Eng. Thermophys. 26(1), 39–52 (2017)

    Article  Google Scholar 

  14. Seth, G.S.; Tripathi, R.; Mishra, M.K.: Hydromagnetic thin film flow of Casson fluid in non-Darcy porous medium with Joule dissipation and Navier’s partial slip. Appl. Math. Mech. (English Edition) 38(11), 1613–1626 (2017). https://doi.org/10.1007/s10483-017-2272-7

    Article  MathSciNet  Google Scholar 

  15. Yahaya, R.I.; Arifin, N.M.; Isa, S.S.P.M.: Stability analysis on the magneto-hydrodynamic flow of Casson fluid over a shrinking sheet with homogeneous-heterogeneous reactions. Entropy 20(652), 1–30 (2018). https://doi.org/10.3390/e20090652

    Article  Google Scholar 

  16. Mahanthesh, B.; Animasaun, I.L.; Rahimi-Gorji, M.; Alarifi, I.M.: Quadratic convective transport of dusty Casson and dusty Carreau fluids past a stretched surface with nonlinear thermal radiation, convective condition, and non-uniform heat source/sink. Phys. A 535(122471), 1–16 (2019). https://doi.org/10.1016/j.physa.2019.122471

    Article  MathSciNet  MATH  Google Scholar 

  17. Hasnain, J.; Abbas, Z.; Sheikh, M.; Aly, S.: Analysis of dusty Casson fluid flow past a permeable stretching sheet bearing power-law temperature and magnetic field. Int. J. Numer. Methods Heat Fluid Flow 30(6), 3463–3480 (2020). https://doi.org/10.1108/HFF-11-2018-0685

    Article  Google Scholar 

  18. Mahanthesh, B.; Makinde, O.D.; Gireesha, B.J.; Krupalakshmi, K.L.; Animasaun, I.L.: Two-phase flow of dusty Casson fluid with Cattaneo-Christov heat flux and heat source past a cone, wedge, and plate. Defect Diffus. Forum 387, 625–639 (2018)

    Article  Google Scholar 

  19. Mahanthesh, B.; Gireesha, B.J.: Thermal Marangoni convection in two-phase flow of dusty Casson fluid. Results Phys. 8, 537–544 (2018). https://doi.org/10.1016/j.rinp.2017.12.066

    Article  Google Scholar 

  20. Hady, F.M.; Mahdy, A.; Mohamed, R.A.; Ahmed, S.E.; Abo-zaid, O.A.: Unsteady natural convection flow of a dusty non-Newtonian Casson fluid along with a vertical wavy plate: numerical approach. J. Braz. Soc. Mech. Sci. Eng. 41(472), 1–20 (2019). https://doi.org/10.1007/s40430-019-1966-6

    Article  Google Scholar 

  21. Gireesha, B.J.; Shankaralingappa, B.M.; Prasannakumar, B.C.; Nagaraja, B.: MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with CattaneoChristov heat flux model. Int. J. Ambient Energy (2020). https://doi.org/10.1080/01430750.2020.1785938

    Article  Google Scholar 

  22. Kasim, A.R.M.; Arifin, N.S.; Zokri, S.M.; Salleh, M.Z.; Mohammad, N.F.; Ching, D.L.C.; Shafie, S.; Ariffin, N.A.N.: Convective transport of fluid-solid interaction: a study between non-Newtonian Casson model with dust particles. Curr. Comput. Aided Drug Des. 10(814), 1–18 (2020). https://doi.org/10.3390/cryst10090814

    Article  Google Scholar 

  23. Kasim, A.R.M.; Arifin, N.S.; Ariffin, N.A.N.; Salleh, M.Z.; Anwar, M.I.: Mathematical model of simultaneous flow between Casson fluid and dust particle over a vertical stretching sheet. Int. J. Integr. Eng. 12, 253–260 (2020)

    Google Scholar 

  24. Shahsavar, A.; Entezari, S.; Askari, I.B.; Ali, H.M.: The effect of using connecting holes on heat transfer and entropy generation behaviors in a micro channels heat sink cooled with biological silver/water nanofluid. Int. Commun. Heat Mass Transf. 123, 104929 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2020.104929

    Article  Google Scholar 

  25. Qureshi, F.A.; Ahmad, N.; Ali, H.M.: Heat dissipation in bituminous asphalt catalyzed by different metallic oxide nanopowders. Constr. Build. Mater. 276, 122220 (2021). https://doi.org/10.1016/j.conbuildmat.2020.122220

    Article  Google Scholar 

  26. Grubka, L.J.; Bobba, K.M.: Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME J. Heat Transf. 107, 248–250 (1985)

    Article  Google Scholar 

  27. Ishak, A.; Nazar, R.; Pop, I.: Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica 44, 369–375 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Aziz, M.A.: Mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation. J. Egypt. Math. Soc. 21, 385–394 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nepal Chandra Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, N.C., Saha, G. Heat and Mass Transfer of Dusty Casson Fluid over a Stretching Sheet. Arab J Sci Eng 47, 16091–16101 (2022). https://doi.org/10.1007/s13369-022-06854-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06854-x

Keywords

Navigation