Skip to main content

Advertisement

Log in

Novel Sensorless PMSM Speed Control Using Advanced Fuzzy MRAS Algorithm

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Permanent magnet synchronous motors (PMSM) have received the attention of manufacturers for electric drive systems because of their high power density, high efficiency, highly durable mechanical construction, and low maintenance costs. However, the use of rotor position encoders in vector control methods increases equipment costs, increases installation space, and is very sensitive to the mechanical vibration of the rotor shaft. Therefore, many sensorless control methods have been proposed, and numerous significant results have been obtained in recent years. Unfortunately, the estimated rotor speed through sensorless control methods often fluctuates around the actual value, called the chattering phenomenon. Chattering is inevitable and degrades PMSM speed control quality when used for closed-loop control loops. This study proposes an advanced Fuzzy Model Reference Adaptive System (Fuzzy MRAS) algorithm to minimize the chattering phenomenon by allowing error removal between actual and calculated stator currents, thereby improving the quality of rotor speed regulation. The superiority of the proposed control method is demonstrated via comparison with conventional MRAS and MRAS combined with Fuzzy PI control techniques through simulation PMSM speed models using Matlab/Simulink software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tang, Z.; Akin, B.: A new LMS algorithm based deadtime compensation method for PMSM FOC drives. IEEE Trans. Ind. Appl. 54(6), 6472–6484 (2018). https://doi.org/10.1109/TIA.2018.2853045

    Article  Google Scholar 

  2. Cash, S.; Olatunbosun, O.: Fuzzy logic field-oriented control of an induction motor and a permanent magnet synchronous motor for hybrid/electric vehicle traction applications. Int. J. Electr. Hybrid Veh. 9(3), 269–284 (2017). https://doi.org/10.1504/IJEHV.2017.087589

    Article  Google Scholar 

  3. Lara, J.; Chandra, A.: Performance investigation of two novel HSFSI demodulation algorithms for encoderless FOC of PMSMs intended for EV propulsion. IEEE Trans. Ind. Electron. 65(2), 1074–1083 (2017). https://doi.org/10.1109/TIE.2017.2733500

    Article  Google Scholar 

  4. Lu, D.; Ouyang, M.; Gu, J.; Li, J.: Optimal velocity control for a battery electric vehicle driven by permanent magnet synchronous motors. Math. Probl. Eng. 2014, 1–14 (2014). https://doi.org/10.1155/2014/193960

    Article  Google Scholar 

  5. Mesloub, H.; Benchouia, M.T.; Goléa, A.; Goléa, N.; Benbouzid, M.E.H.: Predictive DTC schemes with PI regulator and particle swarm optimization for PMSM drive: comparative simulation and experimental study. Int. J. Adv. Manuf. Technol. 86(9–12), 3123–3134 (2016). https://doi.org/10.1007/s00170-016-8406-x

    Article  Google Scholar 

  6. Ghamri, A.; Boumaaraf, R.; Benchouia, M.T.; Mesloub, H.; Goléa, A.; Goléa, N.: Comparative study of ANN DTC and conventional DTC controlled PMSM motor. Math. Comput. Simul. 67(40), 219–230 (2020). https://doi.org/10.1016/j.matcom.2019.09.006

    Article  MathSciNet  MATH  Google Scholar 

  7. Guven, S.; Usta, M.A.; Okumus, H.I.: An improved sensorless DTC-SVM for three-level inverter-fed permanent magnet synchronous motor drive. Electr. Eng. 100(4), 2553–2567 (2018). https://doi.org/10.1007/s00202-018-0731-7

    Article  Google Scholar 

  8. Mendoza-Mondragõn, F.; Hernández-Guzmán, V.M.; Carrillo-Serrano, R.V.: Velocity regulation in pmsms using standard field oriented control plus adaptation. Asian J. Control 17(6), 2382–2388 (2015). https://doi.org/10.1002/asjc.1113

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, S.; Liu, Z.: Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia. IEEE Trans. Ind. Electron. 56(8), 3050–3059 (2009). https://doi.org/10.1109/TIE.2009.2024655

    Article  Google Scholar 

  10. Wang, G.; Valla, M.; Solsona, J.: Position sensorless permanent magnet synchronous machine drives—a review. IEEE Trans. Ind. Electron. 67(7), 5830–5842 (2020). https://doi.org/10.1109/TIE.2019.2955409

    Article  Google Scholar 

  11. Chi, S.; Zhang, Z.; Xu, L.: Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications. IEEE Trans. Ind. Appl. 45(2), 582–590 (2009). https://doi.org/10.1109/TIA.2009.2013545

    Article  Google Scholar 

  12. Jin, S.; Wang, B.; Zhang, Y.; Liu, S.; Jin, W.: Improved Sliding-mode Observer for Sensorless Control of High Speed Permanent Magnet Synchronous Motor. In: 23rd International Conference on Electrical Machines and Systems (ICEMS), pp. 1918–1923 (2020). https://doi.org/10.23919/ICEMS50442.2020.9290794.

  13. Foo, G.; Rahman, M.F.: Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection. IEEE Trans. Ind. Electron. 57(4), 1270–1278 (2010). https://doi.org/10.1109/TIE.2009.2030820

    Article  Google Scholar 

  14. Saad, N.H.; El-Sattar, A.A; Gad, M.A.: Sensorless Field Oriented Control based on improved MRAS speed observer for Permanent Magnet Synchronous Motor drive. In: 18th Int. Middle-East Power Syst. Conf. MEPCON 2016 - Proc., pp. 991–998 (2017). https://doi.org/10.1109/MEPCON.2016.7837017.

  15. Liu, X.; Zhang, G.; Mei, L.; Wang, D.: Speed Estimation with Parameters Identification of PMSM Based on MRAS. J. Control. Autom. Electr. Syst. 27(5), 527–534 (2016). https://doi.org/10.1007/s40313-016-0253-3

    Article  Google Scholar 

  16. Liu, Y.; Wan, J.; Li, G.; Yuan, C.; Shen, H.: MRAS speed identification for PMSM based on fuzzy PI control. In: 2009 4th IEEE Conference on Industrial Electronics and Applications, pp. 1995–1998 (2009). https://doi.org/10.1109/ICIEA.2009.5138552.

  17. Benchabane, F.; Titaouine, A.; Bennis, O.; Yahia, K.; Taibi, D.; Guettaf, A.: Sensorless direct torque control for salient-pole PMSM based on extended Kalman filter fed by AC/DC/AC converter. Front. Energy 6(3), 247–254 (2012). https://doi.org/10.1007/s11708-012-0190-1

    Article  Google Scholar 

  18. Yi, B.; Kang, L.; Tao, S.; Zhao, X.; Jing, Z.: Adaptive two-stage extended kalman filter theory in application of sensorless control for permanent magnet synchronous motor. Math. Probl. Eng. 2013, 1–13 (2013). https://doi.org/10.1155/2013/974974

    Article  MathSciNet  Google Scholar 

  19. Parasiliti, F.; Petrella, R.; Tursini, M.: Sensorless speed control of a PM synchronous motor based on sliding mode observer and extended Kalman filter. In: Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), vol. 1, no. C, pp. 533–540 (2001). https://doi.org/10.1109/IAS.2001.955472.

  20. Paulus, D.; Stumper, J.-F.; Kennel, R.: Sensorless control of synchronous machines based on direct speed and position estimation in polar stator-current coordinates. IEEE Trans. Power Electron. 28(5), 2503–2513 (2013). https://doi.org/10.1109/TPEL.2012.2211384

    Article  Google Scholar 

  21. Zhiqian Chen, M.; Tomita, S.D.; Okuma, S.: An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors. IEEE Trans. Ind. Electron. 50(2), 288–295 (2020). https://doi.org/10.1109/TIE.2003.809391

    Article  Google Scholar 

  22. Wang, Q.; Wang, S.; Chen, C.: Review of sensorless control techniques for PMSM drives. IEEJ Trans. Electr. Electron. Eng. 14(10), 1543–1552 (2019). https://doi.org/10.1002/tee.22974

    Article  MathSciNet  Google Scholar 

  23. Luo, X.; Tang, Q.; Shen, A.; Zhang, Q.: PMSM sensorless control by injecting HF pulsating carrier signal into estimated fixed-frequency rotating reference frame. IEEE Trans. Ind. Electron. 63(4), 2294–2303 (2016). https://doi.org/10.1109/TIE.2015.2505679

    Article  Google Scholar 

  24. Xie, G.; Lu, K.; Dwivedi, S.K.; Rosholm, J.R.; Blaabjerg, F.: Minimum-voltage vector injection method for sensorless control of PMSM for low-speed operations. IEEE Trans. Power Electron. 31(2), 1785–1794 (2016). https://doi.org/10.1109/TPEL.2015.2426200

    Article  Google Scholar 

  25. Wang, G.; Yang, L.; Yuan, B.; Wang, B.; Zhang, G.; Xu, D.: Pseudo-random high-frequency square-wave voltage injection based sensorless control of IPMSM drives for audible noise reduction. IEEE Trans. Ind. Electron. 63(12), 7423–7433 (2016). https://doi.org/10.1109/TIE.2016.2594171

    Article  Google Scholar 

  26. Schauder, C.: Adaptive speed identification for vector control of induction motors without rotational transducers. IEEE Trans. Ind. Appl. 28(5), 1054–1061 (1992). https://doi.org/10.1109/28.158829

    Article  Google Scholar 

  27. Krishnan, R.G.; Isha, T.B.; Balakrishnan, P.: A back-EMF based sensorless speed control of permanent magnet synchronous machine. In: 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT), vol. 2, pp. 1–5 (2017) https://doi.org/10.1109/ICCPCT.2017.8074313.

  28. Cardenas, R.; Pena, R.; Clare, J.; Asher, G.; Proboste, J.: MRAS observers for sensorless control of doubly-fed induction generators. IEEE Trans. Power Electron. 23(3), 1075–1084 (2008). https://doi.org/10.1109/TPEL.2008.921189

    Article  Google Scholar 

  29. Zhou, F.; Yang, J.; Li, B.: A Novel Speed Observer Based on Parameter-optimized MRAS for PMSMs. In: 2008 IEEE International Conference on Networking, Sensing and Control, pp. 1708–1713 (2008). https://doi.org/10.1109/ICNSC.2008.4525498.

  30. Kojabadi, H.M.; Chang, L.: Sensorless PMSM drive with MRAS-based adaptive speed estimator. In: 37th IEEE Power Electronics Specialists Conference, pp. 1–5 (2006) https://doi.org/10.1109/PESC.2006.1712038.

  31. Kojabadi, H.M.; Ghribi, M.: MRAS-based adaptive speed estimator in PMSM drives. In: 9th IEEE International Workshop on Advanced Motion Control, vol. 2006, no. 1, pp. 569–572 (2006) https://doi.org/10.1109/AMC.2006.1631722.

  32. Tárník, M.; Murgaš, J.: Model reference adaptive control of permanent magnet synchronous motor. J. Electr. Eng. 62(3), 117–125 (2011). https://doi.org/10.2478/v10187-011-0020-4

    Article  Google Scholar 

  33. Shiva, B.S.; Verma, V.: MRAS Based Speed Sensorless Vector Controlled PMSM Drive, pp. 549–556.

Download references

Acknowledgements

We acknowledge the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for this study

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Pham Huy Anh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanh, P.Q., Anh, H.P.H. Novel Sensorless PMSM Speed Control Using Advanced Fuzzy MRAS Algorithm. Arab J Sci Eng 47, 14531–14542 (2022). https://doi.org/10.1007/s13369-022-06834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06834-1

Keywords

Navigation