Skip to main content

Advertisement

Log in

Low-Velocity Nonlinear Flow in Tight Reservoir on The Basis of Fluidity and Wettability

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The low-velocity flow in tight reservoir deviates from the traditional Darcy’s law, and this phenomenon is described as nonlinear flow. In order to study the main controlling factors of low-velocity nonlinear flow and the flow characteristics of tight reservoir, the tight oil reservoir in Jimsar Sag, Xinjiang, China, was taken as the research object. Firstly, the physical model experiment of single-phase simulated oil flow is carried out. Then, by analyzing the physical properties of the reservoir and crude oil and experimental data, a fluidity-based low-velocity nonlinear flow mathematical model was established for the “upper and lower sweet spot” reservoirs. At last, according to the influence of fluidity and the wettability index on the threshold pressure gradient, a three-dimensional figure was constructed. Research results show that the parameters in the nonlinear flow mathematical model and fluidity have a good power function relationship. Moreover, for the “upper and lower sweet spot” reservoirs, the relative average errors between the calculated data of the nonlinear flow mathematical model and the experimental data are 4.75 and 3.76%, which indicate good adaptability to tight oil reservoirs in the Jimsar Sag. In the three-dimensional figure, the “upper and lower sweet spot” reservoirs are divided into three different main controlling factor areas corresponding to the change in threshold pressure gradient. In addition, the calculation data of the nonlinear flow mathematical model conform to the regional division of the characteristic figure, clarifying the influencing factors of the low-velocity nonlinear flow in tight reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(I_{\text{w}}\) :

Water wettability index

\(V_{\text{o1}}\) :

Volume of water displacement oil, mL

\(V_{\text{o2}}\) :

Volume of water absorption and oil discharge, mL

\(I_{\text{o}}\) :

Oil wettability index,

\(V_{{\text{w}}{1}}\) :

Volume of oil displacement water, mL

\(V_{\text{w2}}\) :

Volume of oil absorption and water discharge, mL

\({\text{AI}}\) :

Relative wettability index.

\(V\) :

Input rate, ml/min

\({\text{a}}\) :

Coefficient of the second term of a quadratic function

\({\text{b}}\) :

Coefficient of the first term of a quadratic function

\({\text{c}}\) :

Coefficient of constant term of a quadratic function

\( \Delta P\) :

Injection pressure differential, MPa

L :

Length of the core, cm

\({\lambda }_{a}\) :

Minimum threshold pressure gradient, MPa/cm

\({\lambda }_{b}\) :

Pseudo-threshold pressure gradient, MPa/cm

\({\lambda }_{c}\) :

Maximum threshold pressure gradient, MPa/cm

\(K\) :

Core permeability, mD

\(\mu \) :

Viscosity of crude, mPa s

\(\frac{K}{\mu }\) :

Fluidity (permeability to viscosity ratio), mD/mPa s

\({(\frac{k}{\mu })}_{0}\) :

Pseudo-linear slope

References

  1. Zheng, M.; Li, J.Z.; Wu, X.Z., et al.: Physical modeling of oil charging in tight reservoirs: A case study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin. NW China. Petroleum Explor Dev. 43(2), 241–250 (2016)

    Article  Google Scholar 

  2. Zhi, D.M.; Tang, Y.; Yang, Z.F., et al.: Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer sag, Junggar Basin. Oil Gas Geol. 40(3), 524–534 (2019)

    Google Scholar 

  3. Xu, L.; Chang, Q.S.; Yang, C.K., et al.: Characteristics and oil-bearing capability of shale oil reservoir in the Permian Lucaogou Formation, Jimusaer sag. J Oil Gas Geol. 40(3), 536–540 (2019)

    Google Scholar 

  4. Su, Y.; Zha, M.; Ding, X. J. et al.: Petrographic, palynologic and geochemical characteristics of source rocks of the Permian Lucaogou formation in Jimsar Sag, Junggar Basin, NW China: Origin of organic matter input and depositional environments. 183, 106364 (2019)

  5. Su, Y.; Zha, M.; Ding, X.J., et al.: Pore type and pore size distribution of tight reservoirs in the Permian Lucaogou Formation of the Jimsar Sag, Junggar Basin, NW China. Mar Pet Geol. 89, 761–774 (2018)

    Article  Google Scholar 

  6. Li, E.T.; Xiang, B.L.; Liu, X.J., et al.: Study on the genesis of shale oil thickening in Lucaogou Formation in Jimsar Sag, Junggar Basin. Natural Gas Geosci. 31(2), 250–257 (2020)

    MathSciNet  Google Scholar 

  7. Luo, L.; Cheng, S. Q.: In-situ characterization of nonlinear flow behavior of fluid in ultra-low permeability oil reservoirs. J Pet Sci Eng. 203, 108573 (2021)

  8. Diwu, P.X.; Liu, T.J.; You, Z.J., et al.: Effect of low velocity non-Darcy flow on pressure response in shale and tight oil reservoirs. Fuel 216, 398–406 (2018)

    Article  Google Scholar 

  9. Xiong, W.; Lei, Q.; Gao, S.S.: Pseudo threshold pressure gradient to flow for low permeability reservoirs. Petroleum Explor Dev. 36(2), 232–236 (2009)

    Article  Google Scholar 

  10. Gao, Y.; Wu, K.L.; Chen, Z.X., et al.: Effect of wetting hysteresis on fluid flow in shale oil reservoirs. Energy Fuels 35(15), 12075–12082 (2021)

    Article  Google Scholar 

  11. Wu, J. Z.; Cheng, L. S.; Li, C. L. et al.: Experimental Study of Nonlinear Flow in Micropores Under Low Pressure Gradient. Transp Porous Media. 119 (1), 247–265 (2017)

  12. Wang, X.K.; Sheng, J.J.: Effect of low-velocity non-Darcy flow on well production performance in shale and tight oil reservoirs. Fuel 190, 41–46 (2017)

    Article  Google Scholar 

  13. Zeng, J.; Wang, X.Z.; Guo, J.C., et al.: Composite linear flow model for multi-fractured horizontal wells in tight sand reservoirs with the threshold pressure gradient. J Pet Sci Eng. 165, 890–912 (2018)

    Article  Google Scholar 

  14. Dong, M.D.; Yue, X.A.; Shi, X.D., et al.: Effect of dynamic pseudo threshold pressure gradient on well production performance in low-permeability and tight oil reservoirs. J Pet Sci Eng. 173, 69–76 (2019)

    Article  Google Scholar 

  15. Miller, R.J.; Low, P.F.: Threshold gradient for water flow in clay systems. Soil Sci Soc Am J. 27(6), 605–609 (1963)

    Article  Google Scholar 

  16. Prada, A.; Civan, F.: Modification of Darcy’s law for the threshold pressure gradient. J. Petrol. Sci. Eng. 22(4), 237–240 (1999)

    Article  Google Scholar 

  17. Majumder, M.; Chopra, N.; Andrews, R., et al.: Enhanced flow in carbon nanotubes. Nature 438(7064), 44–44 (2005)

    Article  Google Scholar 

  18. Tian, X.F.; Cheng, L.S.; Cao, R.Y., et al.: Characteristics of boundary layer in micro and nano throats of tight sandstone oil reservoirs. Chin J Comput Phys. 33(6), 717–724 (2016)

    Google Scholar 

  19. Xu, S.; Yue, X.; Hou, J., et al.: Influence of boundary-layer fluid on the seepage characteristic of low-permeability reservoir. J Xi'an Shiyou Univ. 22(2), 26–28 (2007)

    Google Scholar 

  20. Song, F.Q.; Tian, H.Y.; Zhang, S.M., et al.: The characteristics of Deionized water flow in hydrophilic mlicro- and nano-flow micro-tubes. Chin J Hydrodyn. 31(5), 615–620 (2016)

    Google Scholar 

  21. Yang, Z. M.: Porous flow mechanics for low permeability reservoirs and its application. University of Chinese Academy of Sciences (Institute of Percolation Fluid Mechanics). (2005)

  22. Wei, Q.; Zhou, H.; Yang, S.: Non-Darcy flow models in porous media via Atangana-Baleanu derivative. Chaos, Solitons & Fractals. 141, 110335 (2020)

  23. Huang, T.; Du, P. B.; Peng, X. K. et al.: Pressure drop and fractal non-Darcy coefficient model for fluid flow through porous media. J Pet Sci Eng. 184, 106579 (2020)

  24. Zhao, L.; Jiang, H. Q.; Wang, H. et al.: Representation of a new physics-based non-Darcy equation for low-velocity flow in tight reservoirs. J Pet Sci Eng. 184 (0), 106518 (2020)

  25. Cheng, Z.L.; Ning, Z.F.; Wang, Q., et al.: The effect of pore structure on non-Darcy flow in porous media using the lattice Boltzmann method. J Pet Sci Eng. 172, 391–400 (2019)

    Article  Google Scholar 

  26. Leng, J.Y.; Lin, X.B.; Wang, L.L.: Effects of osmosis on Darcy flow in shales. Energy Fuels 35(6), 4874–4884 (2021)

    Article  Google Scholar 

  27. Wang, H. L.; Tian, L.; Gu, D. H. et al.: M<ethod for Calculating Non-Darcy Flow Permeability in Tight Oil Reservoir. Transp Porous Media. 133 (3), 357–372 (2020)

  28. Huang, Y.Z.: Nonlinear porous flow feature in low permeability reservoir. Special Oil Gas Reservoirs. 4(1), 9–14 (1997)

    Google Scholar 

  29. Huang, Y.Z.; Yang, Z.M.; He, Y., et al.: Nonlinear porous flow in low permeability porous media. Mech Eng. 35(5), 1–8 (2013)

    Google Scholar 

  30. Zeng, B.; Cheng, L.; Hao, F.: Experiment and mechanism analysis on threshold pressure gradient with different fluids. Soc Pet Eng. 31, 140678 (2010)

  31. Ma, Q.Z.; Yang, S.L.; Wang, J., et al.: Non⁃linear seepage model of tight reservoir based on threshold pressure gradient. J Petrochem Univ 33(01), 36–41 (2020)

    Google Scholar 

  32. Song, F.Q.; Li-Wen, B.O.; Gao, H.Z., et al.: Nonlinear percolation model for wetting fluid of tight reservoirs based on micro-and nano-tubes flow characteristics. Chin J Hydrodyn. 34(6), 772–778 (2019)

    Google Scholar 

  33. Yang, Z.M.; Hui, H.; Luo, Y.T., et al.: New measurement method of mixed wettability in tight oil reservoir and its application. Acta Petrolei Sinica. 38(3), 318–323 (2017)

    Google Scholar 

  34. Sheng, J. J.: Discussion of shale rock wettability and the methods to determine it. Asia-Pacific J Chem Eng. 13 (6), e2263 (2018)

  35. Siddiqui, M. a. Q.; Ali, S.; Fei, H. X. et al.: Current understanding of shale wettability: A review on contact angle measurements. Earth-Sci Rev. 181, 1–11 (2018)

  36. Liu, L.; Min, L.Y.; Sun, Z.G., et al.: Pore structure and percolation characteristics in shale oil reservoir of Jiyang Depression. Petrol Geolo Recovery Efficiency. 28(01), 106–114 (2021)

    Google Scholar 

  37. Zou, C.N.; Yang, Z.; Cui, J.W., et al.: Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Petrol m Explor Dev. 40(1), 15–27 (2013)

    Article  Google Scholar 

  38. Wang, Z.Q.; Li, C.T.; Zhang, D.Y., et al.: Flow mechanism of shale oil reservoir in Jimsar Sag. Xinjiang Petrol Geol. 40(6), 695–700 (2019)

    Google Scholar 

  39. Lv, C.Y.; Wang, J.; Sun, Z.G.: An experimental study on starting pressure gradient of fluids flow in low permeability sandstone porous media. Petrol Explor Dev. 29(2), 86–89 (2002)

    Google Scholar 

  40. Li, H. Y.; Gao, H.; Zhao, X. N. et al.: Experimental study on viscosity reduction of heavy oil with water content by synergistic effect of microwave and nano-catalyst. J Pet Sci Eng. 208, 109271 (2021)

  41. Li, A.; Zhang, S.; Liu, M., et al.: A new method of measuring starting pressure for low permeability reservoir. J Chin Univ Petrol (Ed Nat Sci). 32(1), 68–71 (2008)

    Google Scholar 

  42. Yan, D.D.; Yang, M.P.; Wang, G., et al.: Threshold pressure gradient analysis for low mobility reservoir. J Daqing Petrol Institute. 34(1), 39–42 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support from Opening Project of Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province (YQKF202010), Science and Technology Planning Project of Sichuan Province (2018JY0515).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongbin Ye or Nanjun Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Ye, Z., Liu, D. et al. Low-Velocity Nonlinear Flow in Tight Reservoir on The Basis of Fluidity and Wettability. Arab J Sci Eng 47, 11999–12012 (2022). https://doi.org/10.1007/s13369-022-06797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06797-3

Keywords

Navigation