Skip to main content
Log in

Fault Diagnosis in Bevel Gearbox Using Coiflet Wavelet and Fault Classification Based on ANN Including DNN

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Condition monitoring plays a vital role in predictive maintenance of machinery in today’s world. It is very important to detect the faults in the machinery as early as possible in order to stop the propagation of faults which may lead to heavy damages. The objective of our study is to investigate the vibration analysis of bevel gearbox to detect the faults. An experimental setup was developed to carry out the vibration analysis. Various types of faults were induced in the gearbox. The vibration analysis was carried out for different types of faults with different lubrication levels in the gearbox. MATLAB toolbox was used for signal processing in which Coiflet wavelet was used for denoising the signal. An artificial neural network (ANN) and a deep neural network (DNN) were used to detect the faults in the bevel gearbox automatically. The results were promising in detecting the faults with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

DNN:

Deep neural network

HP:

Horsepower

FFT:

Fast Fourier transform

GMF:

Gear mesh frequency

MSE:

Mean squared error

SNR:

Signal-to-noise ratio

PSNR:

Peak signal-to-noise ratio

RMS:

Root mean square

ROC:

Receiver operating characteristic

RPM:

Revolution per minute

Hz:

Hertz

kHz:

Kilo Hertz

Max:

Maximum

Min:

Minimum

Eq.:

Equation

Sec.:

Section

∑:

Summation

 + ∞:

Positive infinity

 − ∞:

Negative infinity

σ:

Standard deviation

References

  1. Barbieri, N.; Barbieri, G.S.A.V.; Martins, B.M.; Barbieri, L.S.A.V.; Lima, K.F.: Analysis of automotive gearbox faults using vibration signal. Mech. Syst. Signal Process. 129(1), 148–163 (2019). https://doi.org/10.1016/j.ymssp.2019.04.028

    Article  Google Scholar 

  2. Hartono, D.; Halim, D.; Widodo, A.; Roberts, G.: Bevel gearbox fault diagnosis using vibration measurements. MATEC Web Confer. 59(06002), 5 (2016). https://doi.org/10.1051/matecconf/20165906002

    Article  Google Scholar 

  3. Narendiranath Babu, T.; Himamshu, H.S.; Prabin Kumar, N.; Rama Prabha, D.; Nishant, C.: Journal bearing fault detection based on Daubechies wavelet. Arch. Acoust. 42(3), 401–414 (2017). https://doi.org/10.1515/aoa-2017-0042

    Article  Google Scholar 

  4. Sharma, S.; Tiwari S.K., Singh S.: Diagnosis of gear tooth fault in a bevel gearbox using discrete wavelet transform and autoregressive modeling. Life Cycle Reliab. Saf. Eng. 8(1), 21–32 (2019). https://doi.org/10.1007/s41872-018-0061-9

    Article  Google Scholar 

  5. Huang, W.; Kong, F.; Zhao, X.: Spur bevel gearbox fault diagnosis using wavelet packet transform and rough set theory. J. Intell. Manuf. 29(1), 1257–1271 (2018). https://doi.org/10.1007/s10845-015-1174-x

    Article  Google Scholar 

  6. Li, Z.; Ma, Z.; Liu, Y.; Teng, W.; Jiang, R.: Crack fault detection for a gearbox using discrete wavelet transform and an adaptive resonance theory neural network. J. Mech. Eng. 61(1), 63–73 (2015). https://doi.org/10.5545/sv-jme.2014.1769

    Article  Google Scholar 

  7. Heidari, M.; Homaei, H.; Golestanian, H.; Heidari, A.: Fault diagnosis of gearboxes using wavelet support vector machine, least square support vector machine and wavelet packet transform. J. Vibroeng. 18(2), 860–875 (2016)

    Article  Google Scholar 

  8. Wang, J.; Kong, D.; Dong, S.; Wang, C.: The gearbox fault diagnosis based on wavelet transform. Int. Ind. Inf. Comput. Eng. Confer. 12(1), 1973–1976 (2015). https://doi.org/10.2991/iiicec-15.2015.430

    Article  Google Scholar 

  9. Parey, A.; Singh, A.: Gearbox fault diagnosis using acoustic signals, continuous wavelet transform and adaptive neuro-fuzzy inference system. Appl. Acoust. 147(1), 133–140 (2019). https://doi.org/10.1016/j.apacoust.2018.10.013

    Article  Google Scholar 

  10. Chen, R.; Huang, X.; Yang, L.; Xu, X.; Zhang, X.; Zhang, Y.: Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform. Comput. Ind. 106(3), 48–59 (2019). https://doi.org/10.1016/j.compind.2018.11.003

    Article  Google Scholar 

  11. Liang, P.; Deng, C.; Wu, J.; Yang, Z.: Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network. Measurement 159(4), 107768 (2020). https://doi.org/10.1016/j.measurement.2020.107768

    Article  Google Scholar 

  12. Teng, W.; Ding, X.; Cheng, H.; Han, C.; Liu, Y.; Mu, H.: Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform. Renew. Energy 136(9), 393–402 (2019). https://doi.org/10.1016/j.renene.2018.12.094

    Article  Google Scholar 

  13. Xin, Y.; Li, S.; Zhang, Z.; An, Z.; Wang, J.: Adaptive reinforced empirical Morlet wavelet transform and its application in fault diagnosis of rotating machinery. IEEE Access 7(1), 65150–65162 (2019). https://doi.org/10.1109/ACCESS.2019.2917042

    Article  Google Scholar 

  14. Zhang, H., Zhang, L., Jiang, Y.: Overfitting and underfitting analysis for deep learning based end-to-end communication systems. In: 2019 11th International Conference on Wireless Communications and Signal Processing, pp 1–6 (2019). https://doi.org/10.1109/WCSP.2019.8927876

  15. Han, B.; Yang, X.; Ren, Y.; Lan, W.: Comparisons of different deep learning-based methods on fault diagnosis for geared system. Int. J. Distrib. Sens. Netw. 15(11), 1–17 (2019). https://doi.org/10.1177/1550147719888169

    Article  Google Scholar 

  16. Srivastava, A.; Singh, A.; Sugumaran, V.; Amarnath, M.: Fault diagnosis of helical gear box using vibration signals through random tree and wavelet features. Indian J. Sci. Technol. 9(33), 1–11 (2016). https://doi.org/10.17485/ijst/2016/v9i33/101330

    Article  Google Scholar 

  17. Wang, Z.; Zhang, Q.; Xiong, J.; Xiao, M.; Sun, G.; He, J.: Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests. IEEE Sens. J. 17(17), 5581–5588 (2017). https://doi.org/10.1109/JSEN.2017.2726011

    Article  Google Scholar 

  18. Liu, R.; Yang, B.; Zio, E.; Chen, X.: Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech. Syst. Signal Process. 108(1), 33–47 (2018). https://doi.org/10.1016/j.ymssp.2018.02.016

    Article  Google Scholar 

  19. Rajakarunakarana, S.; Venkumara, P.; Devaraja, D.; Surya P.R.K.: Artificial neural network approach for fault detection in rotary system. Appl. Soft Comput. 8(1), 740–748 (2008). https://doi.org/10.1016/j.asoc.2007.06.002

    Article  Google Scholar 

  20. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J.: Data mining: practical machine learning tools and techniques (2017). https://doi.org/10.1016/C2015-0-02071-8

    Article  Google Scholar 

  21. Baron, P.; Kocisko, M.; Blasko, L.; Szentivanyi, P.: Verification of the operating condition of stationary industrial gearbox through analysis of dynamic signal, measured on the pinion bearing housing. Measurement 96(1), 24–33 (2017). https://doi.org/10.1016/j.measurement.2016.10.048

    Article  Google Scholar 

  22. Jedlinski, L.; Jonak, J.: A disassembly-free method for evaluation of spiral bevel gear assembly. Mech. Syst. Signal Process. 88(1), 399–412 (2017). https://doi.org/10.1016/j.ymssp.2016.11.005

    Article  Google Scholar 

  23. Ramteke, D.S.; Parey, A.; Pachori, R.B.: Automated gear fault detection of micron level wear in bevel gears using variational mode decomposition. J. Mech. Sci. Technol. 33(1), 5769–5777 (2019). https://doi.org/10.1007/s12206-000-0000-0

    Article  Google Scholar 

  24. Saravanan, N.; Cholairajan, S.; Ramachandran K.I.: Vibration-based fault diagnosis of spur bevel gear box using fuzzy technique. Expert Syst. Appl. 36(1), 3119–3135 (2009). https://doi.org/10.1016/j.eswa.2008.01.010

    Article  Google Scholar 

  25. Saravanan, N.; RAMACHANDRAN K.I.: Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN). Expert Syst. Appl. 37(1), 4168–4181 (2010). https://doi.org/10.1016/j.eswa.2009.11.006

    Article  Google Scholar 

  26. Sharma, V.; Parey, A.: Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed. Eng. Fail. Anal. 107(1), 104–204 (2020). https://doi.org/10.1016/j.engfailanal.2019.104204

    Article  Google Scholar 

  27. Singh, A.; Parey, A.: Gearbox fault diagnosis under non-stationary conditions with independent angular re-sampling technique applied to vibration and sound emission signals. Appl. Acoust. 144(1), 11–22 (2019). https://doi.org/10.1016/j.apacoust.2017.04.015

    Article  Google Scholar 

  28. Urbanek, J.; Barszcz, T.; Straczkiewicz, M.; Jablonski, A.: Normalization of vibration signals generated under highly varying speed and load with application to signal separation. Mech. Syst. Signal Process. 82(1), 13–31 (2017). https://doi.org/10.1016/j.ymssp.2016.04.017

    Article  Google Scholar 

  29. Ziani, R.; Hammami, A.; Chaari, F.; Felkaoui, A.; Haddar, M.: Gear fault diagnosis under non-stationary operating mode based on EMD, TKEO, and Shock Detector. Compt. Rend. Mecan. 347(1), 663–675 (2019). https://doi.org/10.1016/j.crme.2019.08.003

    Article  Google Scholar 

  30. Zuber, N.; Bajric, R.: Application of artificial neural networks and principal component analysis on vibration signals for automated fault classification of roller element bearings. Maint. Reliab. 18(2), 299–306 (2016). https://doi.org/10.17531/ein.2016.2.19

    Article  Google Scholar 

  31. Zhang, D.; Yu, D.: Multi-fault diagnosis of gearbox based on resonance-based signal sparse decomposition and comb filter. Measurement 103(1), 361–369 (2017). https://doi.org/10.1016/j.measurement.2017.03.006

    Article  Google Scholar 

  32. Magsi, H., Sodhro, A.H., Chachar, F.A., Abro, S.A.K.: Analysis of signal noise reduction by using filters. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies, pp. 1–6 (2018). https://doi.org/10.1109/ICOMET.2018.8346412

  33. Merry, R.J.E.: Wavelet theory and applications: a literature study. DCT Reports, Vol. 2005.053. Eindhoven University of Technology, Eindhoven (2005)

  34. Barat, V.; Borodin, Y.; Kuzmin, A.: Intelligent AE signal filtering methods. J. Acoust. Emiss. 28(1), 109–119 (2010)

    Google Scholar 

  35. Kumar, D.; Kaur, J.; Sharma, V.: Analysis of various wavelets transform techniques. Int. J. Wirel. Commun. Netw. Technol. 5(5), 46–51 (2016)

    Google Scholar 

  36. Chourasia, V.S.; Mittra A. K.: Selection of mother wavelet and denoising algorithm for analysis of foetal phonocardiographic signals. J. Med. Eng. Technol. 33(6), 442–448 (2009). https://doi.org/10.1080/03091900902952618

    Article  Google Scholar 

  37. Monzon, L.; Beylkin, G.; Hereman, W.: Compactly supported wavelets based on almost interpolating and nearly linear phase filters (Coiflets). Appl. Comput. Harmon. Anal. 7(1), 184–210 (1999). https://doi.org/10.1006/acha.1999.0266

    Article  MathSciNet  MATH  Google Scholar 

  38. Maind, S.B.; Wankar, P.: Research paper on basic of artificial neural network. Int. J. Recent Innov. Trends Comput. Commun. 2(1), 96–100 (2014). https://doi.org/10.17762/ijritcc.v2i1.2920

  39. Sazli, M.H.: A brief review of feedforward neural networks. Commun. Fac. Sci. Univer. Ankara Ser. A2–A3 Phys. Sci. Eng. 50(1), 1–7 (2006). https://doi.org/10.1501/commua1-2_0000000026

    Article  MATH  Google Scholar 

  40. Siddharth, S.; Simone, S.; Anidhya, A.: Activation functions in neural networks. Int. J. Eng. Appl. Sci. Technol. 4(12), 310–316 (2020). https://doi.org/10.33564/IJEAST.2020.v04i12.054

    Article  Google Scholar 

  41. Martin, F.M.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993). https://doi.org/10.1016/S0893-6080(05)80056-5

    Article  Google Scholar 

  42. Sharma, P.; Singh, A.: Era of deep neural networks: a review. In: 8th international conference on computing, communication and networking technologies, pp 1–5 (2017). https://doi.org/10.1109/ICCCNT.2017.8203938

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Narendiranath Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, T.N., Ali, P.S.N., Prabha, D.R. et al. Fault Diagnosis in Bevel Gearbox Using Coiflet Wavelet and Fault Classification Based on ANN Including DNN. Arab J Sci Eng 47, 15823–15849 (2022). https://doi.org/10.1007/s13369-022-06767-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06767-9

Keywords

Navigation