Skip to main content
Log in

Autoencoder Model Using Edge Enhancement to Detect Communities in Complex Networks

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Community structure is the utmost significant characteristics in complex networks. Numerous algorithms of community detection have been developed so far. Some methods consider only the lower-order framework, i.e. nodes and edges, and neglect the higher-order framework, whereas other recent methods capture higher-order framework, i.e. motifs (a small dense subgraph), yet they mainly put emphasis on the connected motif hypergraph. These methods help to encounter only fragmentation issue. Moreover, the other major issue in complex network is to reduce the dimension and extract the significant characteristics. In addition to this, the existing methods have sparsity and computational issues as well. Hence, we have developed an autoencoder model using edge enhancement (AMEE) to tackle these issues and uncover the hidden communities in complex networks. It begins by emphasizing edge enhancement to redesign the network connectivity of input network and creates a rewired graph. Embedding of a rewired network is obtained by applying the Autoencoder model. Finally, a community detection technique is applied to reveal the communities. Hence, the proposed method (AMEE) deals with the above-mentioned issues efficiently. Furthermore, a comprehensive analysis of the proposed method is carried out on eight different real-world network datasets, i.e. Polbooks, Email, Polblogs, Cora, Facebook, Com-Orkut, Com-Amazon and Com-Youtube. The Modularity score, F-score and normalized mutual information are used as evaluation parameters to measure the performance of the proposed method. The higher value of these measures clearly indicates the efficacy and quality of the communities achieved using the proposed approach. It shows a significant improvement in comparison with other existing community detection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen, J.; Yuan, B.: Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics 22(18), 2283–2290 (2006)

    Article  Google Scholar 

  2. Garas, A.; Lapatinas, A.; Poulios, K.: The relation between migration and FDI in the OECD from a complex network perspective. Adv. Complex Syst. 19(06–07), 1650009 (2016)

    Article  MathSciNet  Google Scholar 

  3. Stegehuis, C.; Van Der Hofstad, R.; Van Leeuwaarden, J.S.: Epidemic spreading on complex networks with community structures. Sci. Rep. 6(1), 1–7 (2016)

    Article  Google Scholar 

  4. Du, W.B.; Zhou, X.L.; Lordan, O.; Wang, Z.; Zhao, C.; Zhu, Y.B.: Analysis of the Chinese airline network as multi-layer networks. Transp. Res. Part E Logist. Transp. Rev. 89, 108–116 (2016)

    Article  Google Scholar 

  5. Zhao, H.; Li, L.; Peng, H.; Xiao, J.; Yang, Y.; Zheng, M.: Fixed-time synchronization of multi-links complex network. Mod. Phys. Lett. B 31(02), 1750008 (2017)

    Article  Google Scholar 

  6. Fortunato, S.; Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  7. Ng, A.Y.; Jordan, M.I.; Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv. Neural. Inf. Process. Syst. 2, 849–856 (2002)

    Google Scholar 

  8. Rattigan, M. J.; Maier, M.; Jensen, D.: Graph clustering with network structure indices. In: Proceedings of the 24th International Conference on Machine Learning, pp. 783–790 (2007)

  9. Sattari, M.; Zamanifar, K.: A spreading activation-based label propagation algorithm for overlapping community detection in dynamic social networks. Data Knowl. Eng. 113, 155–170 (2018)

    Article  Google Scholar 

  10. Birant, D.; Kut, A.: ST-DBSCAN: an algorithm for clustering spatial–temporal data. Data Knowl. Eng. 60(1), 208–221 (2007)

    Article  Google Scholar 

  11. Girvan, M.; Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Newman, M.E.: Equivalence between modularity optimization and maximum likelihood methods for community detection. Phys. Rev. E 94(5), 052315 (2016)

    Article  Google Scholar 

  13. Brandes, U.; Delling, D.; Gaertler, M.; Görke, R.; Hoefer, M.; Nikoloski, Z.; Wagner, D.: On finding graph clusterings with maximum modularity. In: International Workshop on Graph-Theoretic Concepts in Computer Science. Springer, Berlin, pp. 121–132 (2007)

  14. Clauset, A.; Newman, M.E.; Moore, C.: Finding community structure in very large networks. Physical Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  15. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, P10008 (2008)

    Article  MATH  Google Scholar 

  16. Rosvall, M.; Bergstrom, C. T.: Maps of information flow reveal community structure in complex networks. arXiv preprint physics.soc-ph/0707.0609 (2007)

  17. Zhang, P.; Moore, C.: Scalable detection of statistically significant communities and hierarchies, using message passing for modularity. Proc. Natl. Acad. Sci. 111(51), 18144–18149 (2014)

    Article  Google Scholar 

  18. Rosvall, M.; Bergstrom, C.T.: An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. 104(18), 7327–7331 (2007)

    Article  Google Scholar 

  19. Medus, A.; Acuña, G.; Dorso, C.O.: Detection of community structures in networks via global optimization. Physica A 358(2–4), 593–604 (2005)

    Article  Google Scholar 

  20. Duch, J.; Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005)

    Article  Google Scholar 

  21. Li, S.; Chen, Y.; Du, H.; Feldman, M.W.: A genetic algorithm with local search strategy for improved detection of community structure. Complexity 15(4), 53–60 (2010)

    MathSciNet  Google Scholar 

  22. Zare, H.; Shooshtari, P.; Gupta, A.; Brinkman, R.R.: Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 11(1), 403 (2010)

    Article  Google Scholar 

  23. Chen, J.; Saad, Y.: Dense subgraph extraction with application to community detection. IEEE Trans. Knowl. Data Eng. 24(7), 1216–1230 (2010)

    Article  Google Scholar 

  24. Li, W.; Huang, C.; Wang, M.; Chen, X.: Stepping community detection algorithm based on label propagation and similarity. Physica A 472, 145–155 (2017)

    Article  Google Scholar 

  25. Fei, R.; et al.: A new deep sparse autoencoder for community detection in complex networks. EURASIP J. Wirel. Commun. Netw. 2020(1), 1–25 (2020)

    Article  Google Scholar 

  26. Geng, X.; Hu, Lu.; Sun, J.: Network structural transformation-based community detection with autoencoder. Symmetry 12(6), 944 (2020)

    Article  Google Scholar 

  27. Huang, L.; Wang, C.D.; Chao, H. Y.: A harmonic motif modularity approach for multi-layer network community detection. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 1043–1048 (2018)

  28. Huang, L.; Wang, C.D.; Chao, H.Y.: Higher-order multi-layer community detection. Proc. AAAI Conf. Artif. Intell. 33, 9945–9946 (2019)

    Google Scholar 

  29. Li, P.Z.; Huang, L.; Wang, C.D.; Huang, D.; Lai, J.H.: Community detection using attribute homogenous motif. IEEE Access 6, 47707–47716 (2018)

    Article  Google Scholar 

  30. Li, P. Z.; Huang, L.; Wang, C. D.; Lai, J. H. EdMot: an edge enhancement approach for motif-aware community detection. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 479–487 (2019)

  31. Gutiérrez-Gómez, L.; Delvenne, J. C. Unsupervised network embedding for graph visualization, clustering and classification. arXiv preprint https://arxiv.org/abs/1903.05980 (2019)

  32. Chaudhary, L.; Singh, B. Community detection using an enhanced Louvain method in complex networks. In: International Conference on Distributed Computing and Internet Technology. Springer, Cham, pp. 243–250 (2019)

  33. Cai, D.; He, X.; Han, J.; Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2010)

    Google Scholar 

  34. Frey, B.J.; Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Peixoto, T.P.: Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models. Phys. Rev. E 89(1), 012804 (2014)

    Article  Google Scholar 

  36. Arenas, A.; Fernandez, A.; Fortunato, S.; Gomez, S.: Motif-based communities in complex networks. J. Phys. A Math. Theoret. 41(22), 224001 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Satuluri, V.; Parthasarathy, S. Scalable graph clustering using stochastic flows: applications to community discovery. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 737–746 (2009)

  38. Liu, F.; et al.: Deep learning for community detection: progress, challenges and opportunities. arXiv preprint arXiv:2005.08225 (2020)

  39. Sperlí, G.: A deep learning-based community detection approach. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, (2019)

  40. Wang, H., et al.: Learning graph representation with generative adversarial nets. IEEE Transactions on Knowledge and Data Engineering (2019)

  41. Jia, Y., et al.: Communitygan: Community detection with generative adversarial nets. The World Wide Web Conference (2019)

  42. Ye, F.; Chuan, C.; Zibin, Z.: Deep autoencoder-like nonnegative matrix factorization for community detection. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management (2018)

  43. Cavallari, S., et al.: Learning community embedding with community detection and node embedding on graphs. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (2017)

  44. Chen, Z.; Xiang, L.; Joan, B.: Supervised community detection with line graph neural networks. arXiv preprint arXiv:1705.08415 (2017)

  45. Shchur, O.; Stephan, G.: Overlapping community detection with graph neural networks. arXiv preprint arXiv:1909.12201 (2019)

  46. http://www-personal.umich.edu/~mejn/netdata/

  47. http://snap.stanford.edu/data/

  48. https://linqs.soe.ucsc.edu/data

  49. McAuley, J.; Leskovec, J.: Learning to discover social circles in ego networks. In: NIPS (2012)

  50. Chakraborty, T.; Srinivasan, S.; Ganguly, N.; Mukherjee, A.; Bhowmick, S. On the permanence of vertices in network communities. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1396–1405(2014)

Download references

Acknowledgements

This research was funded by NFOBC fellowship of University Grants Commission under Ministry of Human Resource Development (Government of India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi Chaudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, L., Singh, B. Autoencoder Model Using Edge Enhancement to Detect Communities in Complex Networks. Arab J Sci Eng 48, 1303–1314 (2023). https://doi.org/10.1007/s13369-022-06747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06747-z

Keywords

Navigation