Skip to main content

Advertisement

Log in

Traditional Cementitious Materials for Thermal Insulation

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The increasing requirement for indoor thermal comfort in the building sector leads to an increased demand for new thermal insulating materials. Developing materials capable to meet technical and environmental requirements are a hot topic. Thus, in this study, the authors tried to manufacture an insulating binder free from Portland cement (PC) or foaming agent. This insulating binder based on traditional cementitious materials such as metakaolin (MK), fly ash (FA), hydrated lime and gypsum. To increase its insulation efficiency, different proportions of expanded perlite (EP) and silica fume (SF) were incorporated. The bulk density, compressive strength, thermal conductivity, total porosity and thermal resistance were determined. X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to analyze the results. The results showed that the combination of suitable ratios of FA, lime, gypsum and MK can produce good thermal insulating material with thermal conductivity of 0.331 W/mK associated with good compressive strength. The insulation efficiency of this material can be increased with the incorporation of EP. For more and more insulation efficiency, MK was replaced with SF. In short, these new insulation materials exhibited suitable compressive strength associated with low thermal conductivity (0.331–0.095 W/mK), low density (1275.1–417.3 kg/m3) and high porosity (54.67–81.25%). It is recommended to use these new type of insulation materials in different thermal insulation purposes, of which they satisfied the requirement of Egyptian Energy Code (ECP 306–2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu, T.; Tan, Z.; Xu, C.; Chen, H.; Li, Z.: Study on deep reinforcement learning techniques for building energy consumption forecasting. Energy Build. 208, 109675 (2020)

    Article  Google Scholar 

  2. Xu, X.; Sun, S.; Liu, W.; García, E.H.; He, L.; Cai, Q.; Xu, S.; Wang, J.; Zhu, J.: The cooling and energy saving effect of landscape design parameters of urban park in summer: a case of Beijing, China. Energy Build. 149, 91–100 (2017)

    Article  Google Scholar 

  3. Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A.: A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 43, 843–862 (2015)

    Article  Google Scholar 

  4. Lamy-Mendes, A.; Pontinha, A.D.R.; Alves, P.; Santos, P.; Durães, L.: Progress in silica aerogel-containing materials for buildings’ thermal insulation. Construct. Build. Mater. 286, 122815 (2021)

    Article  Google Scholar 

  5. Aditya, L.; Mahlia, T.; Rismanchi, B.; Ng, H.; Hasan, M.; Metselaar, H.; Muraza, O.; Aditiya, H.: A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 73, 1352–1365 (2017)

    Article  Google Scholar 

  6. Hu, R.; Ma, A.; Wang, Y.: Transient hot wire measures thermophysical properties of organic foam thermal insulation materials. Exp. Thermal Fluid Sci. 98, 674–682 (2018)

    Article  Google Scholar 

  7. Rashad, A.M.: A synopsis about perlite as building material–a best practice guide for civil engineer. Constr. Build. Mater. 121, 338–353 (2016)

    Article  Google Scholar 

  8. A.M. Rashad, A short manual on natural pumice as a lightweight aggregate. J. Build. Eng. (2019) 100802.

  9. Rashad, A.M.: Lightweight expanded clay aggregate as a building material: an overview. Constr. Build. Mater. 170, 757–775 (2018)

    Article  Google Scholar 

  10. Rashad, A.M.: Vermiculite as a construction material: a short guide for Civil Engineer. Constr. Build. Mater. 125, 53–62 (2016)

    Article  Google Scholar 

  11. Hodhod, O.; Rashad, A.; Abdel-Razek, M.; Ragab, A.: Coating protection of loaded RC columns to resist elevated temperature. Fire Saf. J. 44(2), 241–249 (2009)

    Article  Google Scholar 

  12. Rashad, A.M.: Possibility of using metakaolin as thermal insulation material. Int. J. Thermophys. 38(8), 1–11 (2017)

    Article  Google Scholar 

  13. A.M. Rashad, Possibility of producing thermal insulation materials from cementitious materials without foaming agent or lightweight aggregate. Environ. Sci. Pollut. Res. (2021) 1–10

  14. Phavongkham, V.; Wattanasiriwech, S.; Cheng, T.-W.; Wattanasiriwech, D.: Effects of surfactant on thermo-mechanical behavior of geopolymer foam paste made with sodium perborate foaming agent. Construct. Build. Mater. 243, 118282 (2020)

    Article  Google Scholar 

  15. Andrew, R.M.: Global CO 2 emissions from cement production. Earth Syst. Sci. Data 10(1), 195 (2018)

    Article  Google Scholar 

  16. H. Lee, Intergovernmental Panel on Climate Change, (2007).

  17. Wang, L.; Yang, H.; Dong, Y.; Chen, E.; Tang, S.: Environmental evaluation, hydration, pore structure, volume deformation and abrasion resistance of low heat Portland (LHP) cement-based materials. J. Clean. Prod. 203, 540–558 (2018)

    Article  Google Scholar 

  18. Rashad, A.M.: A comprehensive overview about the influence of different additives on the properties of alkali-activated slag: a guide for civil engineer. Constr. Build. Mater. 47, 29–55 (2013)

    Article  Google Scholar 

  19. Cao, W.; Yi, W.; Yin, S.; Peng, J.; Li, J.: A novel low-density thermal insulation gypsum reinforced with superplasticizers. Constr. Build. Mater. 278, 122421 (2021)

    Article  Google Scholar 

  20. Gencel, O.; del Coz-Diaz, J.J.; Sutcu, M.; Koksal, F.; Rabanal, F.P.Á.; Martinez-Barrera, G.: A novel lightweight gypsum composite with diatomite and polypropylene fibers. Constr. Build. Mater. 113, 732–740 (2016)

    Article  Google Scholar 

  21. Wang, Q.; Cui, Y.; Xue, J.: Study on the improvement of the waterproof and mechanical properties of hemihydrate phosphogypsum-based foam insulation materials. Constr. Build. Mater. 230, 117014 (2020)

    Article  Google Scholar 

  22. Ismail, B.; Belayachi, N.; Hoxha, D.: Optimizing performance of insulation materials based on wheat straw, lime and gypsum plaster composites using natural additives. Constr. Build. Mater. 254, 118959 (2020)

    Article  Google Scholar 

  23. Dowling, A.; O’Dwyer, J.; Adley, C.C.: Lime in the limelight. J. Clean. Prod. 92, 13–22 (2015)

    Article  Google Scholar 

  24. Barbero-Barrera, M.; García-Santos, A.; Neila-González, F.: Thermal conductivity of lime mortars and calcined diatoms. Parameters influencing their performance and comparison with the traditional lime and mortars containing crushed marble used as renders. Energy Build. 76, 422–428 (2014)

    Article  Google Scholar 

  25. Mazhoud, B.; Collet, F.; Pretot, S.; Chamoin, J.: Hygric and thermal properties of hemp-lime plasters. Build. Environ. 96, 206–216 (2016)

    Article  Google Scholar 

  26. P. Brzyski; M. Widomski, The influence of partial replacement of hemp shives by expanded perlite on physical properties of hemp-lime composite. In: AIP Conference Proceedings, AIP Publishing LLC, 2017, p. 040006.

  27. Barreca, F.; Fichera, C.: Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy Build. 62, 507–513 (2013)

    Article  Google Scholar 

  28. Larsen, P.K.: Climatic protection of historical vaults with lime–perlite mortar. Stud. Conserv. 65(sup1), P174–P179 (2020)

    Article  Google Scholar 

  29. Rashad, A.M.: Metakaolin as cementitious material: History, scours, production and composition: a comprehensive overview. Constr. Build. Mater. 41, 303–318 (2013)

    Article  Google Scholar 

  30. Rashad, A.M.: Metakaolin: Fresh properties and optimum content for mechanical strength in traditional cementitious materials: a comprehensive overview. Rev. Adv. Mater. Sci. 40(1), 15–44 (2015)

    Google Scholar 

  31. Rashad, A.M.: A brief on high-volume Class F fly ash as cement replacement: a guide for civil engineer. Int. J. Sustain. Built Environ. 4(2), 278–306 (2015)

    Article  Google Scholar 

  32. Mehta, A.; Ashish, D.K.: Silica fume and waste glass in cement concrete production: a review. J. Build. Eng. 29, 100888 (2020)

    Article  Google Scholar 

  33. Demirboğa, R.: Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Build. Environ. 42(7), 2467–2471 (2007)

    Article  Google Scholar 

  34. Demirboǧa, R.: Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build. 35(2), 189–192 (2003)

    Article  Google Scholar 

  35. Urunkar, Y.; Pandit, A.; Bhargava, P.; Joshi, J.; Mathpati, C.; Vasanthakumaran, S.; Jain, D.; Hussain, Z.; Patel, S.; More, V.: Light-weight thermal insulating fly ash cenosphere ceramics. Int. J. Appl. Ceram. Technol. 15(6), 1467–1477 (2018)

    Article  Google Scholar 

  36. Rashad, A.M.; Hassan, A.A.; Zeedan, S.R.: An investigation on alkali-activated Egyptian metakaolin pastes blended with quartz powder subjected to elevated temperatures. Appl. Clay Sci. 132, 366–376 (2016)

    Article  Google Scholar 

  37. BS3892, Specification for Pulverized-Fuel Ash for Use with Portland Cement, BS 3892: Part i, British Standard, 1997.

  38. ASTMC618–15, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM C618–15, ASTM International 2017.

  39. Morsy, M.; Rashad, A.M.; Shoukry, H.; Mokhtar, M.; El-Khodary, S.: Development of lime-pozzolan green binder: The influence of anhydrous gypsum and high ambient temperature curing. J. Build. Eng. 28, 101026 (2020)

    Article  Google Scholar 

  40. Rashad, A.M.; Khalil, M.H.; El-Nashar, M.: Insulation efficiency of alkali-activated lightweight mortars containing different ratios of binder/expanded perlite fine aggregate. Innovat. Infrastr. Solut. 6(3), 1–14 (2021)

    Google Scholar 

  41. ASTMC138/C138M-09, Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete, ASTM C138/C138M-09, ASTM International, 2010.

  42. ASTMC109/C109M, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens), ASTM C109/C109M ASTM International, West Conshohocken, USA, 2021.

  43. ASTMC642, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM C642, ASTM International, 2013.

  44. ASTMC518–91, Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus, ASTM C518–91, ASTM International, 2017.

  45. Rashad, A.M.: Insulating and fire-resistant behaviour of metakaolin and fly ash geopolymer mortars. Proc. Inst. Civ. Eng. Constr. Mater. 172(1), 37–44 (2019)

    Article  Google Scholar 

  46. A.M. Rashad, G.M. Essa, Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cement Concrete Compos. 103617 (2020).

  47. Ashrae, A.: Handbook of Fundamentals, American Society of Heating. Refrigerating and Air Conditioning Engineers Inc., Atlanta, GA (1997)

    Google Scholar 

  48. Işıkdağ, B.: Characterization of lightweight ferrocement panels containing expanded perlite-based mortar. Constr. Build. Mater. 81, 15–23 (2015)

    Article  Google Scholar 

  49. Lu, Z.; Zhang, J.; Sun, G.; Xu, B.; Li, Z.; Gong, C.: Effects of the form-stable expanded perlite/paraffin composite on cement manufactured by extrusion technique. Energy 82, 43–53 (2015)

    Article  Google Scholar 

  50. Wang, L.; Liu, P.; Jing, Q.; Liu, Y.; Wang, W.; Zhang, Y.; Li, Z.: Strength properties and thermal conductivity of concrete with the addition of expanded perlite filled with aerogel. Constr. Build. Mater. 188, 747–757 (2018)

    Article  Google Scholar 

  51. Law Yim Wan, D.S.; Aslani, F.; Ma, G.: Lightweight self-compacting concrete incorporating perlite, scoria, and polystyrene aggregates. J. Mater. Civ. Eng. 30(8), 04018178 (2018)

    Article  Google Scholar 

  52. Gao, H.; Liu, H.; Liao, L.; Mei, L.; Shuai, P.; Xi, Z.; Lv, G.: A novel inorganic thermal insulation material utilizing perlite tailings. Energy Build. 190, 25–33 (2019)

    Article  Google Scholar 

  53. Topçu, İB.; Işıkdağ, B.: Manufacture of high heat conductivity resistant clay bricks containing perlite. Build. Environ. 42(10), 3540–3546 (2007)

    Article  Google Scholar 

  54. Coppola, L.; Coffetti, D.; Crotti, E.; Marini, A.; Passoni, C.; Pastore, T.: Lightweight cement-free alkali-activated slag plaster for the structural retrofit and energy upgrading of poor quality masonry walls. Cement Concrete Compos. 104, 103341 (2019)

    Article  Google Scholar 

  55. Su, Z.; Guo, L.; Zhang, Z.; Duan, P.: Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead. Constr. Build. Mater. 203, 525–540 (2019)

    Article  Google Scholar 

  56. Top, S.; Vapur, H.; Altiner, M.; Kaya, D.; Ekicibil, A.: Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates. J. Mole. Struct. 1202, 127236 (2020)

    Article  Google Scholar 

  57. Zhu, M.; Ji, R.; Li, Z.; Wang, H.; Liu, L.; Zhang, Z.: Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Constr. Build. Mater. 112, 398–405 (2016)

    Article  Google Scholar 

  58. Uysal, H.; Demirboğa, R.; Şahin, R.; Gül, R.: The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem. Concr. Res. 34(5), 845–848 (2004)

    Article  Google Scholar 

  59. Demirboğa, R.; Türkmen, İ; Karakoç, M.B.: Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Build. Environ. 42(1), 349–354 (2007)

    Article  Google Scholar 

  60. Carrasco-Hurtado, B.; Corpas-Iglesias, F.; Cruz-Pérez, N.; Terrados-Cepeda, J.; Pérez-Villarejo, L.: Addition of bottom ash from biomass in calcium silicate masonry units for use as construction material with thermal insulating properties. Constr. Build. Mater. 52, 155–165 (2014)

    Article  Google Scholar 

  61. H. Binici; F. Kalaycı, Production of perlite based thermal insulating material. Int. J. Acad. Res. Reflect. 3(7) (2015).

  62. Oktay, H.; Yumrutaş, R.; Akpolat, A.: Mechanical and thermophysical properties of lightweight aggregate concretes. Constr. Build. Mater. 96, 217–225 (2015)

    Article  Google Scholar 

  63. Abbas, N.; Khalid, H.R.; Ban, G.; Kim, H.T.; Lee, H.-K.: Silica aerogel derived from rice husk: an aggregate replacer for lightweight and thermally insulating cement-based composites. Constr. Build. Mater. 195, 312–322 (2019)

    Article  Google Scholar 

  64. Selvaranjan, K.; Navaratnam, S.; Gamage, J.; Thamboo, J.; Siddique, R.; Zhang, J.; Zhang, G.: Thermal and environmental impact analysis of rice husk ash-based mortar as insulating wall plaster. Constr. Build. Mater. 283, 122744 (2021)

    Article  Google Scholar 

  65. Lu, J.; Jiang, J.; Lu, Z.; Li, J.; Niu, Y.; Yang, Y.: Pore structure and hardened properties of aerogel/cement composites based on nanosilica and surface modification. Constr. Build. Mater. 245, 118434 (2020)

    Article  Google Scholar 

  66. Türkmen, İ; Kantarcı, A.: Effects of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self-compacting concrete. Build. Environ. 42(6), 2378–2383 (2007)

    Article  Google Scholar 

  67. Pachta, V.; Papadopoulos, F.; Stefanidou, M.: Development and testing of grouts based on perlite by-products and lime. Constr. Build. Mater. 207, 338–344 (2019)

    Article  Google Scholar 

  68. Abidi, S.; Nait-Ali, B.; Joliff, Y.; Favotto, C.: Impact of perlite, vermiculite and cement on the thermal conductivity of a plaster composite material: experimental and numerical approaches. Compos. B Eng. 68, 392–400 (2015)

    Article  Google Scholar 

  69. Carabba, L.; Moricone, R.; Scarponi, G.E.; Tugnoli, A.; Bignozzi, M.C.: Alkali activated lightweight mortars for passive fire protection: a preliminary study. Constr. Build. Mater. 195, 75–84 (2019)

    Article  Google Scholar 

  70. Erdoğan, S.T.; Sağlık, A.Ü.: Early-age activation of cement pastes and mortars containing ground perlite as a pozzolan. Cement Concr. Compos. 38, 29–39 (2013)

    Article  Google Scholar 

  71. Lanzón, M.; García-Ruiz, P.: Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Constr. Build. Mater. 22(8), 1798–1806 (2008)

    Article  Google Scholar 

  72. Li, Q.; Wei, H.; Zhang, Y.; Han, L.; Han, S.; Ding, N.: The variations on thermal conductivity and structures of silty clay modified by waste fly ash and oil shale ash after freeze–thaw cycles. Constr. Build. Mater. 260, 119954 (2020)

    Article  Google Scholar 

  73. Zhang, J.; Pan, G.; Zheng, X.; Chen, C.: Preparation and characterization of ultra-lightweight fly ash-based cement foams incorporating ethylene-vinyl acetate emulsion and waste-derived CSH seeds. Constr. Build. Mater. 274, 122027 (2021)

    Article  Google Scholar 

  74. Wang, H.; Sun, Y.; Liu, L.; Ji, R.; Wang, X.: Integrated utilization of fly ash and waste glass for synthesis of foam/dense bi-layered insulation ceramic tile. Energy Build. 168, 67–75 (2018)

    Article  Google Scholar 

  75. Du, Y.; Yang, W.; Ge, Y.; Wang, S.; Liu, P.: Thermal conductivity of cement paste containing waste glass powder, metakaolin and limestone filler as supplementary cementitious material. J. Clean. Prod. 287, 125018 (2021)

    Article  Google Scholar 

  76. Fenoglio, E.; Fantucci, S.; Serra, V.; Carbonaro, C.; Pollo, R.: Hygrothermal and environmental performance of a perlite-based insulating plaster for the energy retrofit of buildings. Energy Build. 179, 26–38 (2018)

    Article  Google Scholar 

  77. Sengul, O.; Azizi, S.; Karaosmanoglu, F.; Tasdemir, M.A.: Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 43(2–3), 671–676 (2011)

    Article  Google Scholar 

  78. Papa, E.; Medri, V.; Kpogbemabou, D.; Morinière, V.; Laumonier, J.; Vaccari, A.; Rossignol, S.: Porosity and insulating properties of silica-fume based foams. Energy Build. 131, 223–232 (2016)

    Article  Google Scholar 

  79. Leiva, C.; Arenas, C.; Vilches, L.; Alonso-Fariñas, B.; Rodriguez-Galán, M.: Development of fly ash boards with thermal, acoustic and fire insulation properties. Waste Manage. 46, 298–303 (2015)

    Article  Google Scholar 

  80. Brooks, A.L.; Shen, Z.; Zhou, H.: Development of a high-temperature inorganic synthetic foam with recycled fly-ash cenospheres for thermal insulation brick manufacturing. J. Clean. Prod. 246, 118748 (2020)

    Article  Google Scholar 

  81. Zhang, Y.; Sun, Q.; Yang, X.: Changes in color and thermal properties of fly ash cement mortar after heat treatment. Constr. Build. Mater. 165, 72–81 (2018)

    Article  Google Scholar 

  82. Jiang, D.; Lv, S.; Cui, S.; Sun, S.; Song, X.; He, S.; Zhang, J.; An, P.: Effect of thermal insulation components on physical and mechanical properties of plant fibre composite thermal insulation mortar. J. Market. Res. 9(6), 12996–13013 (2020)

    Google Scholar 

  83. Lu, Z.; Hanif, A.; Lu, C.; Liu, K.; Sun, G.; Li, Z.: A novel lightweight cementitious composite with enhanced thermal insulation and mechanical properties by extrusion technique. Constr. Build. Mater. 163, 446–449 (2018)

    Article  Google Scholar 

  84. A.M. Rashad; A.S. Ouda, Effect of tidal zone and seawater attack on high-volume fly ash pastes enhanced with metakaolin and quartz powder in the marine environment. Micropor. Mesopor. Mater. 111261 (2021).

  85. Soroka, I.; Setter, N.: The effect of fillers on strength of cement mortars. Cem. Concr. Res. 7(4), 449–456 (1977)

    Article  Google Scholar 

  86. Dias, W.; Khoury, G.; Sullivan, P.: Mechanical properties of hardened cement paste exposed to temperatures up to 700 C (1292 F). Mater. J. 87(2), 160–166 (1990)

    Google Scholar 

  87. The Housing and Building Research Council: Residential Energy Efficiency Building Code, ECP 306. Dar Akhbar El Yom, Cairo (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Rashad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashad, A.M., Essa, G.M.F. & Morsi, W.M. Traditional Cementitious Materials for Thermal Insulation. Arab J Sci Eng 47, 12931–12943 (2022). https://doi.org/10.1007/s13369-022-06718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06718-4

Keywords

Navigation