Skip to main content
Log in

Water Content and Bedding Angle Effects on the Mechanical Properties and Micro-/Macro-Failure Mechanism of Phyllite

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The study of anisotropy and water degradation in phyllite is a prerequisite for excavation and support of phyllite tunnels. Previous studies have mostly analyzed the mechanical characteristics of phyllite under the action of water/laminae alone, but less research has been carried out on the macroscopic properties and microfracture evolution of phyllite under the action of coupled water-laminae. Therefore, the microstructure, mechanical behavior and fracture mode of phyllite were analyzed by polarized light and uniaxial experiments, and then SEM, acoustic emission (AE) and numerical tests of phyllite were carried out. The results indicate that (1) the elastic modulus of phyllite presents an asymmetric U-shape with bedding angle, with the maximum value of 0° and 90° and the minimum value of 60°. The peak strength shows two differentiation trends: U-shaped and nonlinear decreasing with bedding angle. (2) The peak strength and elastic modulus of phyllite are negatively correlated with water content. (3) The fracture mode of phyllite changes from compression shear failure to tensile failure with bedding angle. (4) The laminated structure and fish scale texture of phyllite tend to be discrete due to water erosion, which promotes the expansion of microcracks and weakens the mechanical parameters of the rock. (5) The change law of AE cumulative energy with bedding and water content is consistent with the change in macromechanical characteristics, which reveals the internal relationship between the progressive evolution of microcracks in rocks and macrofractures. The research results can provide an important reference for the construction scheme design, long-term stability, operation and maintenance of similar projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

All data used in this study are openly available from corresponding author upon request.

References

  1. Bai, Q.S.; Young, R.P.: Numerical investigation of the mechanical and damage behaviors of veined gneiss during true-triaxial stress path loading by simulation of in situ conditions. Rock Mech. Rock Eng. 53(1), 133–151 (2020). https://doi.org/10.1007/s00603-019-01898-2

    Article  Google Scholar 

  2. Ji, L.; Lin, M.; Cao, G.; Jiang, W.: A core-scale reconstructing method for shale. Sci. Rep. 9, 1–12 (2019). https://doi.org/10.1038/s41598-019-39442-5

    Article  Google Scholar 

  3. Yin, X.M.; Yan, E.C.; Wan, L.N.; Liu, L.C.; Peng, B.; Wang, P.Z.: Anisotropy of quartz mica schist based on quantitative extraction of fabric information. Bull. Eng. Geol. Environ. 79(5), 2439–2456 (2020). https://doi.org/10.1007/s10064-019-01699-5

    Article  Google Scholar 

  4. Li, K.H.; Yin, Z.Y.; Cheng, Y.M.; Cao, P.; Meng, J.J.: Three-dimensional discrete element simulation of indirect tensile behaviour of a transversely isotropic rock. Int. J. Numer. Anal. Methods Geomech. 44(13), 1812–1832 (2020). https://doi.org/10.1002/nag.3110

    Article  Google Scholar 

  5. Jia, H.L.; Ding, S.; Zi, F.; Li, G.Y.; Yao, Y.: Development of anisotropy in sandstone subjected to repeated frost action. Rock Mech. Rock Eng. 54(4), 1863–1874 (2021). https://doi.org/10.1007/s00603-020-02343-5

    Article  Google Scholar 

  6. Chen, Z.Q.; He, C.; Xu, G.W.; Ma, G.Y.; Yang, W.B.: Supporting mechanism and mechanical behavior of a double primary support method for tunnels in broken phyllite under high geo-stress: a case study. Bull. Eng. Geol. Environ. 78(7), 5253–5267 (2019). https://doi.org/10.1007/s10064-019-01479-1

    Article  Google Scholar 

  7. Wu, R.J.; Li, H.B.; Wang, D.P.: Full-field deformation measurements from Brazilian disc tests on anisotropic phyllite under impact loads. Int. J. Impact Eng. 149, 1–12 (2021). https://doi.org/10.1016/j.ijimpeng.2020.103790

    Article  Google Scholar 

  8. Chen, Z.Q.; He, C.; Xu, G.W.; Ma, G.Y.; Wu, D.: A case study on the asymmetric deformation characteristics and mechanical behavior of deep-buried tunnel in phyllite. Rock Mech. Rock Eng. 52(11), 4527–4545 (2019). https://doi.org/10.1007/s00603-019-01836-2

    Article  Google Scholar 

  9. Ukritchon, B.; Keawsawasvong, S.: Undrained stability of unlined square tunnels in clays with linearly increasing anisotropic shear strength. Geotech. Geol. Eng. 38(1), 897–915 (2020). https://doi.org/10.1007/s10706-019-01023-8

    Article  Google Scholar 

  10. Xu, G.W.; He, C.; Wang, J.; Zhang, J.B.: Study on the damage evolution of secondary tunnel lining in layered rock stratum. Bull. Eng. Geol. Environ. 79(7), 3533–3557 (2020). https://doi.org/10.1007/s10064-020-01775-1

    Article  Google Scholar 

  11. Cai, J.; Du, G.Y.; Ye, H.W.; Lei, T.; Xia, H.; Pan, H.S.: A slate tunnel stability analysis considering the influence of anisotropic bedding properties. Adv. Mater. Sci. Eng. 2019(23), 1–17 (2019). https://doi.org/10.1155/2019/4653401

    Article  Google Scholar 

  12. Chang, S.H.; Chen, C.S.; Wang, T.T.: Sediment Sluice Tunnel of Zengwen Reservoir and construction of section with huge underground excavation adjacent to neighboring slope. Eng. Geol. 260, 1–19 (2019). https://doi.org/10.1016/j.enggeo.2019.105227

    Article  Google Scholar 

  13. Moussaei, N.; Sharifzadeh, M.; Safiriar, K.; Khosravi, M.H.: A new classification of failure mechanisms at tunnels in stratified rock masses through physical and numerical modeling. Tunn. Undergr. Space Technol. 91, 1–12 (2019). https://doi.org/10.1016/j.tust.2019.103017

    Article  Google Scholar 

  14. Wang, Y.P.; Xiong, L.X.: Numerical analysis of the influence of bolt set on the shear resistance of jointed rock masses. Civ. Eng. J. Tehran 6(6), 1039–1055 (2020). https://doi.org/10.28991/cej-2020-03091527

    Article  Google Scholar 

  15. Balamuralikrishnan, R.; Saravanan, J.: Effect of addition of alccofine on the compressive strength of cement mortar cubes. Emerg. Sci. J. 5, 155–170 (2021). https://doi.org/10.28991/esj-2021-01265

    Article  Google Scholar 

  16. Akulshin, A.; Bredikhina, N.; Akulshin, A.; Aksenteva, I.; Ermakova, N.: Development of filters with minimal hydraulic resistance for underground water intakes. Civ. Eng. J. Tehran 6, 919–927 (2020). https://doi.org/10.28991/cej-2020-03091517

    Article  Google Scholar 

  17. Guo, X.L.; Tan, Z.S.; Wang, X.; Li, A.; Ma, Z.J.; Wu, Y.S.: Effect of bedding angle and mineral composition on mechanical properties and fracture behavior of phyllite under unloading confining pressures. Geotech. Geol. Eng. 38(4), 3611–3621 (2020). https://doi.org/10.1007/s10706-020-01238-0

    Article  Google Scholar 

  18. Shi, X.S.; Jing, H.W.; Yin, Q.; Zhao, Z.L.; Han, G.S.; Gao, Y.: Investigation on physical and mechanical properties of bedded sandstone after high-temperature exposure. Bull. Eng. Geol. Environ. 79(5), 2591–2606 (2020). https://doi.org/10.1007/s10064-020-01729-7

    Article  Google Scholar 

  19. Wen, S.; Zhang, C.S.; Chang, Y.L.; Hu, P.: Dynamic compression characteristics of layered rock mass of significant strength changes in adjacent layers. J. Rock Mech. Geotech. Eng. 12(2), 353–365 (2020). https://doi.org/10.1016/j.jrmge.2019.09.003

    Article  Google Scholar 

  20. Wu, Z.H.; Lou, Y.L.; Yin, S.; Wang, A.L.; Liu, H.; Sun, W.J.; Zuo, Y.J.; Chen, B.: Acoustic and fractal analyses of the mechanical properties and fracture modes of bedding-containing shale under different seepage pressures. Energy Sci. Eng. 8(10), 3638–3656 (2020). https://doi.org/10.1002/ese3.772

    Article  Google Scholar 

  21. Yin, P.F.; Yang, S.Q.: Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing. Acta Geophys. 66(4), 585–605 (2018). https://doi.org/10.1007/s11600-018-0152-z

    Article  Google Scholar 

  22. Hooker, J.N.; Ruhl, M.; Dickson, A.J.; Hansen, L.N.; Idiz, E.; Hesselbo, S.P.; Cartwright, J.: Shale anisotropy and natural hydraulic fracture propagation: an example from the jurassic (Toarcian) Posidonienschiefer, Germany. J. Geophys. Res. Solid Earth 125(3), 1–14 (2020). https://doi.org/10.1029/2019JB018442

    Article  Google Scholar 

  23. Wang, H.; Ren, F.Q.; Chang, Y.: Effect of bedding angle on tunnel slate failure behavior under indirect tension. Geomat. Nat. Hazards Risk 11(1), 428–445 (2020). https://doi.org/10.1080/19475705.2020.1729870

    Article  Google Scholar 

  24. Zuo, J.P.; Lu, J.F.; Ghandriz, R.; Wang, J.T.; Li, Y.H.; Zhang, X.Y.; Li, J.; Li, H.T.: Mesoscale fracture behavior of Longmaxi outcrop shale with different bedding angles: experimental and numerical investigations. J. Rock Mech. Geotech. Eng. 12(2), 297–309 (2020). https://doi.org/10.1016/j.jrmge.2019.11.001

    Article  Google Scholar 

  25. Ding, C.D.; Zhang, Y.; Hu, D.W.; Zhou, H.; Shao, J.F.: Foliation effects on mechanical and failure characteristics of slate in 3D space under brazilian test conditions. Rock Mech. Rock Eng. 53(9), 3919–3936 (2020). https://doi.org/10.1007/s00603-020-02146-8

    Article  Google Scholar 

  26. Liu, S.X.; Wang, Z.X.; Zhang, L.X.: Experimental study on the cracking process of layered shale using X-ray microCT. Energy Explor. Exploit. 36(2), 297–313 (2018). https://doi.org/10.1177/0144598717736855

    Article  Google Scholar 

  27. Gu, H.L.; Tao, M.; Li, X.B.; Momeni, A.; Cao, W.Z.: The effects of water content and external incident energy on coal dynamic behaviour. Int. J. Rock Mech. Min. Sci. 123, 1–16 (2019). https://doi.org/10.1016/j.ijrmms.2019.104088

    Article  Google Scholar 

  28. Huang, S.B.; He, Y.B.; Liu, G.F.; Lu, Z.X.; Xin, Z.K.: Effect of water content on the mechanical properties and deformation characteristics of the clay-bearing red sandstone. Bull. Eng. Geol. Environ. 80(2), 1767–1790 (2021). https://doi.org/10.1007/s10064-020-01994-6

    Article  Google Scholar 

  29. Li, C.M.; Liu, N.; Liu, W.R.: Experimental investigation of mechanical behavior of sandstone with different moisture contents using the acoustic emission technique. Adv. Civ. Eng. 2020(3), 1–10 (2020). https://doi.org/10.1155/2020/8877921

    Article  Google Scholar 

  30. Rabat, A.; Tomas, R.; Cano, M.: Evaluation of mechanical weakening of calcarenite building stones due to environmental relative humidity using the vapour equilibrium technique. Eng. Geol. 278, 1–19 (2020). https://doi.org/10.1016/j.enggeo.2020.105849

    Article  Google Scholar 

  31. Song, Y.Q.; Ma, H.F.; Li, X.S.; Zheng, J.J.; Yang, M.J.; Fu, H.: Experimental investigation on the influence of water content on mechanical properties and failure characteristics of tuff. Geotech. Geol. Eng. 39(4), 2871–2882 (2021). https://doi.org/10.1007/s10706-020-01661-3

    Article  Google Scholar 

  32. Tang, S.B.: The effects of water on the strength of black sandstone in a brittle regime. Eng. Geol. 239, 167–178 (2018). https://doi.org/10.1016/j.enggeo.2018.03.025

    Article  Google Scholar 

  33. Yao, Q.L.; Wang, W.N.; Zhu, L.; Xia, Z.; Tang, C.J.; Wang, X.H.: Effects of moisture conditions on mechanical properties and AE and IR characteristics in coal-rock combinations. Arab. J. Geosci. 13(14), 1–15 (2020). https://doi.org/10.1007/s12517-020-05610-5

    Article  Google Scholar 

  34. Yu, C.Y.; Tang, S.B.; Tang, C.A.; Duan, D.; Zhang, Y.J.; Liang, Z.Z.; Ma, K.; Ma, T.H.: The effect of water on the creep behavior of red sandstone. Eng. Geol. 253, 64–74 (2019). https://doi.org/10.1016/j.enggeo.2019.03.016

    Article  Google Scholar 

  35. Yu, L.Q.; Yao, Q.L.; Li, X.H.; Wang, W.N.; Han, H.; Zhang, M.T.: Experimental study of failure characteristics and fissure propagation in hydrous siltstone. Arab. J. Geosci. 13(13), 1–19 (2020). https://doi.org/10.1007/s12517-020-05522-4

    Article  Google Scholar 

  36. Zhao, Y.C.; Yang, T.H.; Xu, T.; Zhang, P.H.; Shi, W.H.: Mechanical and energy release characteristics of different water-bearing sandstones under uniaxial compression. Int. J. Damage Mech. 27(5), 640–656 (2018). https://doi.org/10.1177/1056789517697472

    Article  Google Scholar 

  37. Franklin, J.A.: Suggested methods for determining water-content, porosity, density, absorption and related properties and swelling and slake-durability index properties. Int. J. Rock Mech. Min. Sci. 16, 143–151 (1979)

    Article  Google Scholar 

  38. Jiang, D.Y.; Xie, K.N.; Chen, J.; Zhang, S.L.; Tiedeu, W.N.; Xiao, Y.; Jiang, X.: Experimental analysis of sandstone under uniaxial cyclic loading through acoustic emission statistics. Pure Appl. Geophys. 176, 265–277 (2019). https://doi.org/10.1007/s00024-018-1960-4

    Article  Google Scholar 

  39. Zhao, Y.F.; Ren, S.; Wang, L.; Zhang, P.; Liu, R.; Chen, F.; Jiang, X.: Acoustic emission and physicomechanical properties of concrete under sulfate attack. J. Mater. Civ. Eng. 33(4), 04021016 (2021). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003572

    Article  Google Scholar 

  40. Song, H.H.; Jiang, Y.D.; Elsworth, D.; Zhao, Y.X.; Wang, J.H.; Liu, B.: Scale effects and strength anisotropy in coal. Int. J. Coal Geol. 195, 37–46 (2018). https://doi.org/10.1016/j.coal.2018.05.006

    Article  Google Scholar 

  41. Song, H.H.; Zhao, Y.X.; Elsworth, D.; Jiang, Y.D.; Wang, J.H.: Anisotropy of acoustic emission in coal under the uniaxial loading condition. Chaos Solitons Fractals 130, 1–7 (2020). https://doi.org/10.1016/j.chaos.2019.109465

    Article  Google Scholar 

  42. Ma, L.H.; Jiang, X.; Chen, J.; Zhao, Y.F.; Liu, R.; Ren, S.: Analysis of damages in layered surrounding rocks induced by blasting during tunnel construction. Int. J. Struct. Stab. Dyn. 21(7), 2150089 (2021). https://doi.org/10.1142/S0219455421500899

    Article  MathSciNet  Google Scholar 

  43. Ma, L.H.; Lin, F.; Liu, R.; Liu, P.; Xia, G.; Chen, L.C.: Disturbance and control of national strategic gas storage induced by adjacent tunnel blasting. Front. Earth Sci. (2022). https://doi.org/10.3389/feart.2021.807073

    Article  Google Scholar 

  44. ITASCA. Particle flow code, version 5.00.35. Minneapolis, MN, USA: Itasca: 2018.

  45. Shen, H.M.; Zhang, Q.; Li, Q.; Li, X.C.; Shi, L.; Shen, N.: Experimental and numerical investigations of the dynamic permeability evolution of a fracture in granite during shearing under different normal stress conditions. Rock Mech. Rock Eng. 53(10), 4429–4447 (2020). https://doi.org/10.1007/s00603-020-02074-7

    Article  Google Scholar 

  46. Shen, J.Y.; Zhan, S.X.; Karakus, M.; Zuo, J.P.: Effects of flaw width on cracking behavior of single-flawed rock specimens. Bull. Eng. Geol. Environ. 80(2), 1701–1711 (2021). https://doi.org/10.1007/s10064-020-02029-w

    Article  Google Scholar 

  47. Zhang, Y.P.; Shi, C.; Zhang, Y.L.; Yang, J.X.; Chen, X.: Numerical analysis of the brittle-ductile transition of deeply buried marble using a discrete approach. Comput. Part. Mech. 8, 893–904 (2021). https://doi.org/10.1007/s40571-020-00375-w

    Article  Google Scholar 

  48. Ersoy, H.; Karahan, M.; Kolayli, H.; Sunnetci, M.O.: Influence of mineralogical and micro-structural changes on the physical and strength properties of post-thermal-treatment clayey rocks. Rock Mech. Rock Eng. 54(2), 679–694 (2021). https://doi.org/10.1007/s00603-020-02282-1

    Article  Google Scholar 

  49. Liu, J.T.; Yang, Y.; Gu, C.P.; Li, H.D.: Influence of dry heating regime on the mechanical and shrinkage properties of reactive powder concrete. J. Zhejiang Univ. Sci A 19(12), 926–938 (2018). https://doi.org/10.1631/jzus.A1800394

    Article  Google Scholar 

  50. Mu, Q.Y.; Ng, C.W.W.; Zhou, C.; Zhou, G.G.D.: Effects of clay content on the volumetric behavior of loess under heating-cooling cycles. J. Zhejiang Univ. Sci A 20(12), 979–990 (2019). https://doi.org/10.1631/jzus.A1900274

    Article  Google Scholar 

  51. Tripathi, A.; Gupta, N.; Singh, A.K.; Mohanty, S.P.; Rai, N.; Pain, A.: Effects of elevated temperatures on the microstructural, physico-mechanical and elastic properties of Barakar sandstone: a study from one of the world’s largest underground coalmine fire region, Jharia, India. Rock Mech. Rock Eng. 54(3), 1293–1314 (2021). https://doi.org/10.1007/s00603-020-02315-9

    Article  Google Scholar 

  52. Yan, D.M.; Ruan, S.Q.; Chen, S.K.; Liu, Y.; Tian, Y.; Wang, H.L.; Ye, T.N.: Effects and mechanisms of surfactants on physical properties and microstructures of metakaolin-based geopolymer. J. Zhejiang Univ. Sci A 22(2), 130–146 (2021). https://doi.org/10.1631/jzus.A2000059

    Article  Google Scholar 

  53. Wang, H.; Yang, T.H.; Zuo, Y.J.: Experimental study on acoustic emission of weakly cemented sandstone considering bedding angle. Shock Vib. 2018, 1–12 (2018). https://doi.org/10.1155/2018/6086583

    Article  Google Scholar 

  54. Zhang, S.W.; Shou, K.J.; Xian, X.F.; Zhou, J.P.; Liu, G.J.: Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests. Tunn. Undergr. Space Technol. 71, 298–308 (2018). https://doi.org/10.1016/j.tust.2017.08.031

    Article  Google Scholar 

  55. Hu, X.J.; Xie, N.; Zhu, Q.Z.; Chen, L.; Li, P.C.: Modeling damage evolution in heterogeneous granite using digital image-based grain-based model. Rock Mech. Rock Eng. 53(11), 4925–4945 (2020). https://doi.org/10.1007/s00603-020-02191-3

    Article  Google Scholar 

  56. Liu, Y.; Ma, T.S.; Wu, H.; Chen, P.: Investigation on mechanical behaviors of shale cap rock for geological energy storage by linking macroscopic to mesoscopic failures. J. Energy Storage 29, 1–15 (2020). https://doi.org/10.1016/j.est.2020.101326

    Article  Google Scholar 

  57. Jiang, X.; Jiang, D.Y.; Xian, X.F.; Salje, E.K.H.: Collapsing minerals: Crackling noise of sandstone and coal, and the predictability of mining accidents. Am. Miner. 101, 2751–2758 (2016). https://doi.org/10.2138/am-2016-5809CCBY

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC, Grant Numbers 51774057 and 52074048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Liu or Song Ren.

Ethics declarations

Conflict of interest

Long-hao Ma, Jie Chen, Yun-Feng Zhao, Chuang Zhang, Rong Liu and Song Ren declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, LH., Chen, J., Zhao, YF. et al. Water Content and Bedding Angle Effects on the Mechanical Properties and Micro-/Macro-Failure Mechanism of Phyllite. Arab J Sci Eng 47, 13151–13169 (2022). https://doi.org/10.1007/s13369-022-06716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06716-6

Keywords

Navigation