Skip to main content
Log in

Geoenvironmental Application of Novel Persian Gum Biopolymer in Sandy Soil Stabilization

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Persian gum as a newly introduced hydrocolloid with unique adhesive and gel forming properties has found wide applications in various industries such as medicine, food and textile. Recently, it has been employed in soil environment as a biocompatible stabilizing agent. However, due to its novelty, there is no study about its application in cohesionless sandy soil. This paper provides a comprehensive evaluation of Persian gum treated sand through macro- and microscale tests including compaction, unconfined compressive strength (UCS), direct shear (DS), triaxial (UU), California bearing ratio (CBR), falling head permeability, scanning electron microscopy (SEM), stereo zoom microscopy (SZM), Brunner, Emmet and Teller (BET), particle size analysis (PSA) and thermal gravimetric analysis (TGA). The tests were conducted on untreated and treated soil with different Persian gum contents and curing times. The obtained results represent the powerful performance of this novel gum in mechanical strength and bearing capacity enhancement through binding soil particles and formation of large agglomerated grains. Also, the remarkable ability of this novel gum in pore filling and compacting soil interstructure makes it a favorable additive in soil projects with permeability reduction purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Phummiphan, I.; Horpibulsuk, S.; Rachan, R.; Arulrajah, A.; Shen, S.L.; Chindaprasirt, P.: High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. J. Hazard. Mater. 341, 257–267 (2018). https://doi.org/10.1016/J.JHAZMAT.2017.07.067

    Article  Google Scholar 

  2. Horpibulsuk, S.; Katkan, W.; Naramitkornburee, A.: Modified Ohio’s curves: a rapid estimation of compaction curves for coarse- and fine-grained soils. Geotech. Test. J. 32, 64–75 (2009). https://doi.org/10.1520/GTJ101659

    Article  Google Scholar 

  3. Wu, H.N.; Shen, S.L.; Ma, L.; Yin, Z.Y.; Horpibulsuk, S.: Evaluation of the strength increase of marine clay under staged embankment loading: a case study. Mar. Georesources Geotechnol. 33, 532–541 (2015). https://doi.org/10.1080/1064119X.2014.954180

    Article  Google Scholar 

  4. Sukmak, K.; Sukmak, P.; Horpibulsuk, S.; Han, J.; Shen, S.L.; Arulrajah, A.: Effect of fine content on the pullout resistance mechanism of bearing reinforcement embedded in cohesive-frictional soils. Geotext. Geomembranes. 43, 107–117 (2015). https://doi.org/10.1016/j.geotexmem.2014.11.010

    Article  Google Scholar 

  5. Kafodya, I.; Okonta, F.: Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil. Constr. Build. Mater. 170, 737–746 (2018). https://doi.org/10.1016/J.CONBUILDMAT.2018.02.194

    Article  Google Scholar 

  6. Yoo, C.; Abbas, Q.: Laboratory investigation of the behavior of a geosynthetic encased stone column in sand under cyclic loading. Geotext. Geomembranes. 48, 431–442 (2020). https://doi.org/10.1016/J.GEOTEXMEM.2020.02.002

    Article  Google Scholar 

  7. Bo, M.W.; Arulrajah, A.; Choa, V.; Horpibulsuk, S.; Disfani, M.M.: Deep compaction of granular fills in a land reclamation project by dynamic and vibratory compaction techniques. In: Ground Improvement Case Histories: Compaction, Grouting and Geosynthetics. pp. 263–274 (2015)

  8. BaBachowski, L.: Vibroflotation Control of Sandy Soils using DMT and CPTU. Presented at the (2015)

  9. Winterkorn, H.F.; Pamukcu, S.: Soil stabilization and grouting. Found. Eng. Handb. (1991). https://doi.org/10.1007/978-1-4757-5271-7_9

    Article  Google Scholar 

  10. Behnood, A.: Soil and clay stabilization with calcium- and non-calcium-based additives: a state-of-the-art review of challenges, approaches and techniques. Transp. Geotech. 17, 14–32 (2018). https://doi.org/10.1016/J.TRGEO.2018.08.002

    Article  Google Scholar 

  11. Firoozi, A.A.; Guney Olgun, C.; Firoozi, A.A.; Baghini, M.S.: Fundamentals of soil stabilization. Int. J. Geo-Engineering. 8, 1–16 (2017). https://doi.org/10.1186/s40703-017-0064-9

    Article  Google Scholar 

  12. Ikeagwuani, C.C.; Nwonu, D.C.: Emerging trends in expansive soil stabilisation: a review. J. Rock Mech. Geotech. Eng. 11, 423–440 (2019). https://doi.org/10.1016/J.JRMGE.2018.08.013

    Article  Google Scholar 

  13. Fasihnikoutalab, M.H.; Asadi, A.; Kim Huat, B.; Westgate, P.; Ball, R.J.; Pourakbar, S.: Laboratory-scale model of carbon dioxide deposition for soil stabilisation. J. Rock Mech. Geotech. Eng. 8, 178–186 (2016). https://doi.org/10.1016/j.jrmge.2015.11.001

    Article  Google Scholar 

  14. Yi, Y.L.; Liska, M.; Unluer, C.; Al-Tabbaa, A.: Initial investigation into the carbonation of MgO for soil stabilisation. In: 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013. pp. 2641–2644. IOS Press (2013)

  15. Ogila, W.A.M.: Effectiveness of fresh cement kiln dust as a soil stabilizer and stabilization mechanism of high swelling clays. Environ. Earth Sci. 80, 283 (2021). https://doi.org/10.1007/s12665-021-09589-4

    Article  Google Scholar 

  16. Jiang, N.J.; Du, Y.J.; Liu, K.: Durability of lightweight alkali-activated ground granulated blast furnace slag (GGBS) stabilized clayey soils subjected to sulfate attack. Appl. Clay Sci. 161, 70–75 (2018). https://doi.org/10.1016/j.clay.2018.04.014

    Article  Google Scholar 

  17. Hamidi, S.; Marandi, S.M.: Clay concrete and effect of clay minerals types on stabilized soft clay soils by epoxy resin. Appl. Clay Sci. 151, 92–101 (2018). https://doi.org/10.1016/j.clay.2017.10.010

    Article  Google Scholar 

  18. Tingle, J.S.; Newman, J.K.; Larson, S.L.; Weiss, C.A.; Rushing, J.F.: Stabilization mechanisms of nontraditional additives. Transp. Res. Rec. 2, 59–67 (2007). https://doi.org/10.3141/1989-49

    Article  Google Scholar 

  19. Jayanthi, P.N.V.; Singh, D.N.: Utilization of sustainable materials for soil stabilization: state-of-the-art. Adv. Civ. Eng. Mater. 5, 20150013 (2016). https://doi.org/10.1520/ACEM20150013

    Article  Google Scholar 

  20. Ghasemzadeh, H.; Mehrpajouh, A.; Pishvaei, M.; Mirzababaei, M.: Effects of curing method and glass transition temperature on the unconfined compressive strength of acrylic liquid polymer-stabilized kaolinite. J. Mater. Civ. Eng. 32, 04020212 (2020). https://doi.org/10.1061/(asce)mt.1943-5533.0003287

    Article  Google Scholar 

  21. Khadka, S.D.; Jayawickrama, P.W.; Senadheera, S.; Segvic, B.: Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash based geopolymer modified with lime and gypsum. Transp. Geotech. 23, 100327 (2020). https://doi.org/10.1016/j.trgeo.2020.100327

    Article  Google Scholar 

  22. Chen, R.; Zhu, Y.; Lai, H.P.; Bao, W.: Stabilization of soft soil using low-carbon alkali-activated binder. Environ. Earth Sci. 79, 510 (2020). https://doi.org/10.1007/s12665-020-09259-x

    Article  Google Scholar 

  23. Almajed, A.; Abbas, H.; Arab, M.; Alsabhan, A.; Hamid, W.; Al-Salloum, Y.: Enzyme-induced carbonate precipitation (EICP)-based methods for ecofriendly stabilization of different types of natural sands. J. Clean. Prod. 274, 122627 (2020). https://doi.org/10.1016/j.jclepro.2020.122627

    Article  Google Scholar 

  24. Zhang, T.; Cai, G.; Liu, S.: Application of lignin-stabilized silty soil in highway subgrade: a macroscale laboratory study. J. Mater. Civ. Eng. 30, 04018034 (2018). https://doi.org/10.1061/(asce)mt.1943-5533.0002203

    Article  Google Scholar 

  25. Hataf, N.; Ghadir, P.; Ranjbar, N.: Investigation of soil stabilization using chitosan biopolymer. J. Clean. Prod. 170, 1493–1500 (2018). https://doi.org/10.1016/j.jclepro.2017.09.256

    Article  Google Scholar 

  26. Fatehi, H.; Abtahi, S.M.; Hashemolhosseini, H.; Hejazi, S.M.: A novel study on using protein based biopolymers in soil strengthening. Constr. Build. Mater. 167, 813–821 (2018). https://doi.org/10.1016/j.conbuildmat.2018.02.028

    Article  Google Scholar 

  27. Anandha Kumar, S.; Sujatha, E.R.: Compaction and Permeability Characteristics of Biopolymer-Treated Soil. In: Lecture Notes in Civil Engineering. pp. 107–117. Springer Science and Business Media Deutschland GmbH (2021)

  28. Moghal, A.A.B.; Vydehi, K.V.: State-of-the-art review on efficacy of xanthan gum and guar gum inclusion on the engineering behavior of soils. Innov. Infrastruct. Solut. 6, 1–14 (2021). https://doi.org/10.1007/s41062-021-00462-8

    Article  Google Scholar 

  29. Fatehi, H.; Bahmani, M.; Noorzad, A.: Strengthening of dune sand with sodium alginate biopolymer. In: Eighth International Conference on Case Histories in Geotechnical Engineering (Geo-Congress 2019), pp. 157–166. American Society of Civil Engineers (ASCE) (2019)

  30. Chang, I.; Im, J.; Lee, S.W.; Cho, G.C.: Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying. Constr. Build. Mater. 143, 210–221 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.061

    Article  Google Scholar 

  31. Smitha, S.; Rangaswamy, K.; Keerthi, D.S.: Triaxial test behaviour of silty sands treated with agar biopolymer. Int. J. Geotech. Eng. 15, 484–495 (2021). https://doi.org/10.1080/19386362.2019.1679441

    Article  Google Scholar 

  32. Cabalar, A.F.; Awraheem, M.H.; Khalaf, M.M.: Geotechnical properties of a low-plasticity clay with biopolymer. J. Mater. Civ. Eng. 30, 04018170 (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002380

    Article  Google Scholar 

  33. Ghasemzadeh, H.; Modiri, F.: Application of novel Persian gum hydrocolloid in soil stabilization. Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.116639

    Article  Google Scholar 

  34. Golkar, A.; Taghavi, S.M.; Dehnavi, F.A.: The emulsifying properties of persian gum (Amygdalus scoparia spach) as compared with gum arabic. Int. J. Food Prop. 21, 416–436 (2018). https://doi.org/10.1080/10942912.2018.1454464

    Article  Google Scholar 

  35. Sadeghi, F.; Kadkhodaee, R.; Emadzadeh, B.; Phillips, G.O.: Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system. Carbohydr. Polym. 179, 71–78 (2018). https://doi.org/10.1016/j.carbpol.2017.09.060

    Article  Google Scholar 

  36. Raoufi, N.; Kadkhodaee, R.; Fang, Y.; Phillips, G.O.: Ultrasonic degradation of Persian gum and gum tragacanth: effect on chain conformation and molecular properties. Ultrason. Sonochem. 52, 311–317 (2019). https://doi.org/10.1016/j.ultsonch.2018.12.002

    Article  Google Scholar 

  37. Mohammadi, S.; Abbasi, S.; Scanlon, M.G.: Development of emulsifying property in Persian gum using octenyl succinic anhydride (OSA). Int. J. Biol. Macromol. 89, 396–405 (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.006

    Article  Google Scholar 

  38. ASTM D698: Standard test methods for laboratory compaction characteristics of soil using. ASTM Stand. Guid. 3, 1–10 (2003). doi: https://doi.org/10.1520/D1557-12.1

  39. Abbasi, S.; Rahimi, S.: Persian gum. In: Mishra, M. (ed.) Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, pp. 5919–5928. CRC Press (2015)

    Chapter  Google Scholar 

  40. Abbasi, S.: Challenges towards characterization and applications of a novel hydrocolloid. Curr. Opin. Colloid Interface Sci. 28, 37–45 (2017)

    Article  Google Scholar 

  41. Dabestani, M.; Kadkhodaee, R.; Owen Philips, G.; Abbasi, S.: Persian gum: A comprehensive review on its physicochemical and functional properties. Food Hydrocoll. 78, 92–99 (2018)

    Article  Google Scholar 

  42. Molaei, H.; Jahanbin, K.: Structural features of a new water-soluble polysaccharide from the gum exudates of Amygdalus scoparia Spach (Zedo gum). Carbohydr. Polym. 182, 98–105 (2018). https://doi.org/10.1016/j.carbpol.2017.10.099

    Article  Google Scholar 

  43. Abbasi, S.: Persian Gum (Amygdalus scoparia Spach). In: Emerging Natural Hydrocolloids: Rheology and Functions. pp. 273–298 (2019)

  44. Khodaei, D.; Oltrogge, K.; Hamidi-Esfahani, Z.: Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and Persian gum. Lwt. 117, 108617 (2020). https://doi.org/10.1016/j.lwt.2019.108617

    Article  Google Scholar 

  45. Fadavi, G.; Mohammadifar, M.A.; Zargarran, A.; Mortazavian, A.M.; Komeili, R.: Composition and physicochemical properties of Zedo gum exudates from Amygdalus scoparia. Carbohydr. Polym. 101, 1074–1080 (2014). https://doi.org/10.1016/j.carbpol.2013.09.095

    Article  Google Scholar 

  46. Ho, L.S.; Nakarai, K.; Ogawa, Y.; Sasaki, T.; Morioka, M.: Effect of internal water content on carbonation progress in cement-treated sand and effect of carbonation on compressive strength. Cem. Concr. Compos. 85, 9–21 (2018). https://doi.org/10.1016/J.CEMCONCOMP.2017.09.016

    Article  Google Scholar 

  47. Scrivener, K.; Snellings, R.; Lothenbach, B., et al.: A Practical Guide to Microstructural Analysis of Cementitious Materials. CRC Press Boca Raton, FL, USA (2016)

    Google Scholar 

  48. ASTM D2166: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil 1. ASTM Int. 1–7 (2013). https://doi.org/10.1520/D2166

  49. ASTM D3080: D3080/D3080M-11. Standard test method for direct shear test of soils under consolidated drained conditions. ASTM Int. (2011). https://doi.org/10.1520/D3080

  50. ASTM D2850: Standard test method for unconsolidated-undrained triaxial compression test on cohesive soils. ASTM International (2007)

  51. ASTM D1883: Standard test method for California bearing ratio (CBR) of laboratory-compacted soils. ASTM International (2016)

  52. ASTM D5084: Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM International (2004)

  53. Ayeldeen, M.K.; Negm, A.M.; El Sawwaf, M.A.: Evaluating the physical characteristics of biopolymer/soil mixtures. Arab. J. Geosci. (2016). https://doi.org/10.1007/s12517-016-2366-1

    Article  Google Scholar 

  54. Martín-Alfonso, J.E.; Cuadri, A.A.; Berta, M.; Stading, M.: Relation between concentration and shear-extensional rheology properties of xanthan and guar gum solutions. Carbohydr. Polym. 181, 63–70 (2018). https://doi.org/10.1016/j.carbpol.2017.10.057

    Article  Google Scholar 

  55. Rahimi, S., Abbasi, S., Sahari, M.A., Azizi, M.H.: Characterization of an unknown exudate gum from Iran: Persian gum. In: Electronic Conference on Innovation in Food Processing. pp. 1–5 (2013)

  56. Fadavi, G.; Mohammadifar, M.A.; Zargaran, A.; Azadnia, E.: The study of composition, molecular weight and rheological caracteristics of Zedo gum exudates from Amygdalus scoparia. Iran. J. Nutr. Sci. Food Technol. 7, 35–41 (2013)

    Google Scholar 

  57. Lee, S.; Im, J.; Cho, G.-C.; Chang, I.: Tri-Axial Shear Behavior of Xanthan Gum Biopolymer-Treated Sand. Presented at the March (2019)

  58. Lee, M.; Im, J.; Cho, G.C.; Ryu, H.H.; Chang, I.: Interfacial shearing behavior along xanthan gum biopolymer-treated sand and solid interfaces and its meaning in geotechnical engineering aspects. Appl. Sci. 11, 1–23 (2021). https://doi.org/10.3390/app11010139

    Article  Google Scholar 

  59. Rashid, A.S.A.; Latifi, N.; Meehan, C.L.; Manahiloh, K.N.: Sustainable improvement of tropical residual soil using an environmentally friendly additive. Geotech. Geol. Eng. 35, 2613–2623 (2017). https://doi.org/10.1007/s10706-017-0265-1

    Article  Google Scholar 

  60. Soldo, A.; Miletić, M.; Auad, M.L.: Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci. Rep. 10, 1–13 (2020). https://doi.org/10.1038/s41598-019-57135-x

    Article  Google Scholar 

  61. Sun, Z.; Li, Z.; Qu, K.; Zhang, Z.; Niu, Y.; Xu, W.; Ren, C.: A review on recent advances in gel adhesion and their potential applications. J. Mol. Liq. 325, 115254 (2021). https://doi.org/10.1016/J.MOLLIQ.2020.115254

    Article  Google Scholar 

  62. Chang, I.; Im, J.; Cho, G.C.: Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Can. Geotech. J. 53, 1658–1670 (2016). https://doi.org/10.1139/cgj-2015-0475

    Article  Google Scholar 

  63. Chang, I.; Im, J.; Prasidhi, A.K.; Cho, G.C.: Effects of Xanthan gum biopolymer on soil strengthening. Constr. Build. Mater. 74, 65–72 (2015). https://doi.org/10.1016/j.conbuildmat.2014.10.026

    Article  Google Scholar 

  64. Wu, Y.; Ding, W.; He, Q.: The gelation properties of tara gum blended with κ-carrageenan or xanthan. Food Hydrocoll. (2018). https://doi.org/10.1016/j.foodhyd.2017.11.018

    Article  Google Scholar 

  65. Chen, C.; Wu, L.; Perdjon, M.; Huang, X.; Peng, Y.: The drying effect on xanthan gum biopolymer treated sandy soil shear strength. Constr. Build. Mater. 197, 271–279 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.120

    Article  Google Scholar 

  66. Li, Y.; Tanaka, T.: Phase Transitions of Gels. 22, 243–277 (2003). https://doi.org/10.1146/ANNUREV.MS.22.080192.001331

  67. Santamarina, J.C.; Klein, A.K.; Fam, M.A.: Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring. Wiley, New York (2001)

    Google Scholar 

  68. Qureshi, M.U.; Chang, I.; Al-Sadarani, K.: Strength and durability characteristics of biopolymer-treated desert sand. Geomech. Eng. 12, 785–801 (2017). https://doi.org/10.12989/gae.2017.12.5.785

    Article  Google Scholar 

  69. Chang, I.; Prasidhi, A.K.; Im, J.; Shin, H.D.; Cho, G.C.: Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 253–254, 39–47 (2015). https://doi.org/10.1016/j.geoderma.2015.04.006

    Article  Google Scholar 

  70. Mhinzi, G.S.; Mghweno, L.A.R.; Buchweishaija, J.: Intra-species variation of the properties of gum exudates from two Acacia species of the series Gummiferae. Food Chem. 107, 1407–1412 (2008). https://doi.org/10.1016/j.foodchem.2007.09.069

    Article  Google Scholar 

  71. Chang, I.; Lee, M.; Tran, A.T.P.; Lee, S.; Kwon, Y.M.; Im, J.; Cho, G.C.: Review on Biopolymer-based Soil Treatment (BPST) Technology in Geotechnical Engineering Practices, (2020)

  72. Stewart, T.L.; Fogler, H.S.: Biomass plug development and propagation in porous media. Biotechnol. Bioeng. 72, 353–363 (2001). https://doi.org/10.1002/1097-0290(20010205)72:3%3c353::AID-BIT13%3e3.0.CO;2-U

    Article  Google Scholar 

  73. Ivanov, V.; Chu, J.: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci. Bio/Technol. 72(7), 139–153 (2008). https://doi.org/10.1007/S11157-007-9126-3

    Article  Google Scholar 

  74. Basu, D.; Misra, A.; Puppala, A.J.: Sustainability and geotechnical engineering: Perspectives and review. Can. Geotech. J. 52, 96–113 (2014). https://doi.org/10.1139/cgj-2013-0120

    Article  Google Scholar 

  75. Smitha, S.; Sachan, A.: Use of agar biopolymer to improve the shear strength behavior of sabarmati sand. Int. J. Geotech. Eng. 10, 387–400 (2016). https://doi.org/10.1080/19386362.2016.1152674

    Article  Google Scholar 

  76. Guo, L.: Investigation of soil stabilization using biopolymers. (2014). https://dr.lib.iastate.edu/handle/20.500.12876/28096

  77. Alsanad, A.: Novel biopolymer treatment for wind induced soil erosion. (2011). https://hdl.handle.net/2286/R.I.9118

  78. Yosefi, F.; Abbasi, S.; Ezatpanah, H.: Effect of Persian gum concentration, oil content, whey protein concentrate, and pH on the stability of emulsions prepared by ultrasonic homogenizer. Res. Innov. Food Sci. Technol. 1, 199–218 (2012)

    Google Scholar 

  79. Latifi, N.; Horpibulsuk, S.; Meehan, C.L.; Majid, M.Z.A.; Rashid, A.S.A.: Xanthan gum biopolymer: an eco-friendly additive for stabilization of tropical organic peat. Environ. Earth Sci. (2016). https://doi.org/10.1007/s12665-016-5643-0

    Article  Google Scholar 

  80. Arab, M.G.; Mousa, R.A.; Gabr, A.R.; Azam, A.M.; El-Badawy, S.M.; Hassan, A.F.: Resilient behavior of sodium alginate-treated cohesive soils for pavement applications. J. Mater. Civ. Eng. 31, 04018361 (2019). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002565

    Article  Google Scholar 

  81. Mahmood, M.S.; Akhtarpour, A.; Alali, A.A.A.: Mechanical behavior of dam foundation with vertical sand drain, case study: Sombar Dam. J. Eng. Technol. Sci. (2019). https://doi.org/10.5614/j.eng.technol.sci.2019.51.3.6

    Article  Google Scholar 

  82. Yang, L.; Yang, Y.; Chen, Z.; Guo, C.; Li, S.: Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecol. Eng. (2014). https://doi.org/10.1016/j.ecoleng.2013.10.019

    Article  Google Scholar 

  83. Saadatkhah, N.; Carillo Garcia, A.; Ackermann, S.; Leclerc, P.; Latifi, M.; Samih, S.; Patience, G.S.; Chaouki, J.: Experimental methods in chemical engineering: thermogravimetric analysis—TGA (2020)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Darvishan.

Ethics declarations

Conflicts of interest

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adabi, M., Darvishan, E., Eyvazi, G. et al. Geoenvironmental Application of Novel Persian Gum Biopolymer in Sandy Soil Stabilization. Arab J Sci Eng 47, 12915–12929 (2022). https://doi.org/10.1007/s13369-022-06645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06645-4

Keywords

Navigation