Skip to main content
Log in

Analysis of Mechanical Behavior of Lining Structure of High-Filled Cut-and-Cover Tunnel Based on DEM

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In order to make the stress of high-filled cut-and-cover tunnels more reasonable and to ensure their safety and stability, a new cut-and-cover tunnel called load reduction cut-and-cover tunnel (LRCCT) is proposed. PFC2D, a computer program based on the discrete element method, was employed to simulate and analyze the deformation law and mechanical characteristics of LRCCT, which was then compared with a routine cut-and-cover tunnel (RCCT). The influence of the height and width of load reduction blocks (LRB) on the lining mechanical behavior of a LRCCT was further studied. The numerical results show that the LRCCT can not only effectively reduce the vertical earth pressure (VEP) on the roof, but also reduce the horizontal earth pressure (HEP) on the sidewall of a LRCCT. At the same time, the best combination value of the height and width of the LRB is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Li, S.; Wang, Q.C.; Li, J.X.; Li, S.Z.; Zhang, Y.J.: Calculation of the earth pressure on the high fill open-cut tunnel with load-reduction reinforcement considering secondary loading. Rock Soil Mech. 36(11), 3229–3234 (2015) ([in Chinese])

    Google Scholar 

  2. Marston, A.: The theory of external loads on closed conduits in the light of the latest experiments. Highway Res. Board 9, 130–170 (1930)

    Google Scholar 

  3. Spangler, M.G.: A theory on negative projecting conduits. Highway Res. Board 30, 153–162 (1951)

    Google Scholar 

  4. Kang, J.S.; Parker, F.; Yoo, C.H.: Soil-structure interaction and imperfect trench installations for deeply buried concrete pipes. J. Geotech. Geoenviron. Eng. 133(3), 277–285 (2007)

    Article  Google Scholar 

  5. Lee, H.J.; Roh, H.S.: The use of recycled tire chips to minimize dynamic earth pressure during compaction of backfill. Constr. Build. Mater. 21(5), 1016–1026 (2007)

    Article  Google Scholar 

  6. Mcaffee, R.P.; Valsangkar, A.J.: Field performance, centrifuge testing and numerical modelling of an induced trench installation. Can. Geotech. J. 45(1), 85–101 (2008)

    Article  Google Scholar 

  7. Chen, B.G.; Song, D.B.; Mao, X.Y.; Chen, E.J.; Zhang, J.: Model test and numerical simulation on rigid load shedding culvert backfilled with sand. Comput. Geotech. 79, 31–40 (2016)

    Article  Google Scholar 

  8. Song, D.B.; Chen, B.G.; Khan, A.: Analytical solution of the vertical earth pressure on load-shedding culvert under high fill. Computers Geotech. 122, 103495 (2020)

    Article  Google Scholar 

  9. Li, S.; Li, S.Z.; Wang, Q.C.; Ma, L.; Wang, Q.S.; Xu, W.Q.: Unloading model test and numerical simulation analysis on high fill loess open cut tunnel with EPS. Chin. J. Rock Mech. Eng. 35(S1), 3394–3408 (2016) ([in Chinese])

    Google Scholar 

  10. Li, S.; Ho, I.H.; Ma, L.; Yao, Y.X.; Wang, C.D.: Load reduction on high-filled cut-and-cover tunnel using discrete element method. Computer Geotech. 114, 103149 (2019)

    Article  Google Scholar 

  11. Li, S.; Yao, Y.X.; Ho, I.H.; Ma, L.; Wang, Q.C.; Wang, C.D.: Coupled effect of expanded polystyrene and geogrid on load reduction for high-filled cut-and-cover tunnels using the discrete element method. Int. J. Geomech. 20(06), 04020052 (2020)

    Article  Google Scholar 

  12. Li, S.; Han, G.Q.; Ho, I.H.; Ma, L.; Wang, Q.C.; Yu, B.T.: Coupled effect of cross-sectional shape and load reduction on high-filled cut-and-cover tunnels considering soil-structure interaction. Int. J. Geomech. 20(07), 04020082 (2020)

    Article  Google Scholar 

  13. Molins, C.; Arnau, O.: Experimental and analytical study of structure response of segmental tunnel linings based on an in situ loading test Part 1: test configuration and execution. Tunnel. Undergr. Space Technol. 26(06), 764–777 (2011)

    Article  Google Scholar 

  14. Wang, M.N.; Xu, T.Y.; Yu, L.; Luo, Y.: Dynamic mechanical property of new type of high fill open cut tunnel with bi-layer lining considering foundation stiffness. China Railw. Sci. 38(01), 68–76 (2017) ([in Chinese])

    Google Scholar 

  15. Yao, Y.X.; Li, S.; Ma, L.; Wang, H.; Yu, B.T.; Wang, C.D.: Analysis on soil arching for unloading structure of high-hilled cut-and-cover tunnel based on particle flow simulation. J. Railw. Sci. Eng. 17(01), 0139–0209 (2020) ([in Chinese])

    Google Scholar 

  16. Ma, L.; Li, S.; Ho, I.H.; Wang, Q.C.; Yu, B.T.: Method to estimate lateral earth pressure on high-filled cut-and-cover tunnels. KSCE J. Civ. Eng. 24(03), 975–987 (2020)

    Article  Google Scholar 

  17. Powrie, W.; Ni, Q.; Harkness, R.M.; Zhang, X.: Numerical modelling of plane strain tests on sands using a particulate approach. Geotechnique 55(4), 297–306 (2005)

    Article  Google Scholar 

  18. Zhang, H.W.; Qin, J.M.: Simulation of mechanical behaviors of granular materials by discrete element method based on mesoscale nonlinear contact law. Chin. J. Geotech. Eng. 28(11), 1964–1969 (2006) ([in Chinese])

    Google Scholar 

  19. The National Standards Compilation Group of People’s Republic of China: Code for design of concrete structures (GB 50010–2010). China Architecture & Building Press, Beijing (2010).

    Google Scholar 

  20. Song, Z.Y.; Konietzky, H.; Herbst, M.: Three-dimensional particle model based numerical simulation on multi-level compressive cyclic loading of concrete. Constr. Build. Mater. 225, 661–677 (2019)

    Article  Google Scholar 

  21. Zhuo, B.; Wang, F.Y.; Fang, Y.; Chen, Y.; Ning, G.X.: Analysis of cracking development and mechanical characteristics of high-filled cut-and-cover tunnel. KSCE J. Civ. Eng. 24(08), 2519–2532 (2020)

    Article  Google Scholar 

  22. Hu, X.Y.; He, C.; Lai, X.H.; Walton, G.; Fu, W.; Fang, Y.: A DEM-based study of the disturbance in dry sandy ground caused by EPB shield tunneling. Tunn. Undergr. Space Technol. 101, 103410 (2020). https://doi.org/10.1016/j.tust.2020.103410

    Article  Google Scholar 

  23. Nitka, M.; Tejchman, J.: Meso-mechanical modelling of damage in concrete using discrete element method with porous ITZs of defined width around aggregates. Eng. Fract. Mech. 231, 107029 (2020)

    Article  Google Scholar 

  24. Xie, C.; Yuan, L.J.; Zhao, M.; Jia, Y.H.: Study on failure mechanism of porous concrete based on acoustic emission and discrete element method. Constr. Build. Mater. 235, 117409 (2020)

    Article  Google Scholar 

  25. Atkinson J.H., Sallfors G.: Experimental determination of stress-strain-time characteristics in laboratory and in situ tests. General report. Proc. 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, 3, 915–956 (1991)

  26. Zhu, H.H.; Huang, F.; Xu, Q.W.: Model test and numerical simulation for progressive failure of weak and fractured tunnel surrounding rock under different overburden depths. Chin. J. Rock Mech. Eng. 29(6), 1113–1122 (2010) ([in Chinese])

    Google Scholar 

  27. Corey, R.; Han, J.; Khatri, D.K.; Parsons, R.L.: Laboratory study on geosynthetic protection of buried steel-reinforced HDPE pipes from static loading. J. Geotech. Geoenviron. Eng. 140(6), 04014019 (2014)

    Article  Google Scholar 

  28. Lai, H.J.; Zheng, J.J.; Zhang, J.; Zhang, R.J.; Cui, L.: DEM analysis of soil arching within geogrid-reinforced and unreinforced pile-supported embankments. Comput. Geotech. 61, 13–23 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (52078428) and the Sichuan Outstanding Young Science and Technology Talent Project (2020JDJQ0032). The authors are indebted to these agencies for their support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Fang, Y., Li, S. et al. Analysis of Mechanical Behavior of Lining Structure of High-Filled Cut-and-Cover Tunnel Based on DEM. Arab J Sci Eng 47, 12729–12743 (2022). https://doi.org/10.1007/s13369-022-06593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06593-z

Keywords

Navigation