Skip to main content
Log in

Prediction of Strength of Plain and Blended Cement Concretes Cured Under Hot Weather Using Quadratic Regression and ANN Tools

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Concreting and curing under hot climatic conditions pose adverse effects on the characteristics of concrete. These challenges have prompted cement and concrete technologists to incorporate pozzolanic materials for the dual advantages from technical and sustainable perspectives. In this research, the impact of: (1) casting temperature between the range of 25–45 °C, (2) curing regimes, namely water ponding, burlap covering or curing compound, and (3) pozzolanic materials, namely fly ash, very fine fly ash, silica fume, natural pozzolan and ground granulated blast furnace slag on the long-term strength development of concrete have been investigated. Prediction models correlating the investigated variables and concrete strength were developed utilizing quadratic regression models and artificial neural networks (ANNs). ANN models were able to predict the compressive strength of concrete with higher accuracy than that of regression model. This model is expected to be applied for designing concrete of higher strengths under hot weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: climatemps.com]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

°C:

Unit for temperature, degree Celsius

Y :

Output of prediction models (compressive strength of concrete) (MPa)

X :

Vector of input variables

a, b, c :

Coefficients for regression model

W :

Vector of weight values for nodes in artificial neural network

Yi:

Actual value of compressive strength of concrete (MPa) for each sample

Y’i:

Predicted value of compressive strength of concrete (MPa) for each sample

fc’:

Compressive strength of concrete (MPa)

n :

Number of samples

References

  1. ACI Committee 305.: ACI 305R-10 Guide to hot weather concreting

  2. Mehta, P.K.; Monteiro, P.J.M.: Concrete Microstructure, Properties, and Materials. McGraw-Hill, New York (2017)

    Google Scholar 

  3. Al Martini, S.; Al Khatib, M.: An experimental study on the self-consolidating concrete (SCC) under hot weather and hauling time. Key Eng. Mater. 677, 3–7 (2016)

    Article  Google Scholar 

  4. Ortiz, J.; Aguado, A.; Agulló, L.; García, T.: Influence of environmental temperatures on the concrete compressive strength: simulation of hot and cold weather conditions. Cem. Concr. Res. 35(10), 1970–1979 (2005)

    Article  Google Scholar 

  5. Al-Martini, S.; Al-Khatib, M.I.: Rheology of self-consolidating concrete in hot weather conditions. Proc. Inst. Civ. Eng. Constr. Mater. 173(5), 215–226 (2020)

    Article  Google Scholar 

  6. Sawan, J.S.; Qasrawi, H.Y.: Early age properties of Pozzolanic mortars under hot weather. J. Mater. Civ. Eng. 3(3), 165–178 (1991)

    Article  Google Scholar 

  7. Abbasi, A.F.; Al-Tayyib, A.J.; Al-Ali, M.B.: Effect of hot weather on strength of reinforced concrete beams. Cem. Concr. Compos. 14(3), 209–221 (1992)

    Article  Google Scholar 

  8. da Nóbrega, A.C.V.; Mouret, M.; Cassagnabere, F.; Le, V.-A.: Improved 28-day compressive strength of SCC mixed and cured in hot weather: non-conventional behavior. Constr. Build. Mater. 173, 650–661 (2018)

    Article  Google Scholar 

  9. Sawan, J.S.: Strength and shrinkage of natural pozzolanic mortar in hot weather. J. Mater. Civ. Eng. 4(2), 153–165 (1992)

    Article  Google Scholar 

  10. Al-Ani, S.H.; Al-Zaiwary, M.A.K.: The effect of curing period and curing delay on concrete in hot weather. Mater. Struct. 21(3), 205–212 (1988)

    Article  Google Scholar 

  11. Rahal, K.N.: Effects of improper moist curing on flexural strength of slabs cast under hot weather conditions. Constr. Build. Mater. 110, 337–345 (2016)

    Article  Google Scholar 

  12. Ibrahim, M.; Shameem, M.; Al-Mehthel, M.; Maslehuddin, M.: Effect of curing methods on strength and durability of concrete under hot weather conditions. Cem. Concr. Compos. 41, 60–69 (2013)

    Article  Google Scholar 

  13. Nasir, M.; Al-Amoudi, O.S.B.; Al-Gahtani, H.J.; Maslehuddin, M.: Effect of casting temperature on strength and density of plain and blended cement concretes prepared and cured under hot weather conditions. Constr. Build. Mater. 112, 529–537 (2016)

    Article  Google Scholar 

  14. Nasir, M.; Baghabra Al-Amoudi, O.S.; Maslehuddin, M.: Effect of placement temperature and curing method on plastic shrinkage of plain and pozzolanic cement concretes under hot weather. Constr. Build. Mater. 152, 943–953 (2017)

    Article  Google Scholar 

  15. Ahmadi, B.H.: Initial and final setting time of concrete in hot weather. Mater. Struct. 33(8), 511–514 (2000)

    Article  Google Scholar 

  16. Al-Fadhala, M.; Hover, K.C.: Rapid evaporation from freshly cast concrete and the Gulf environment. Constr. Build. Mater. 15(1), 1–7 (2001)

    Article  Google Scholar 

  17. Jain, A.K.; Mao, J.; Mohiuddin, K.M.: Artificial neural networks: a tutorial. Computer (Long. Beach. Calif.) 29(3), 31–44 (1996)

    Google Scholar 

  18. Adeli, H.: Neural networks in civil engineering: 1989–2000. Comput. Civ. Infrastruct. Eng. 16(2), 126–142 (2001)

    Article  Google Scholar 

  19. Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M.; Aldwaik, M.; Adeli, H.: Neurocomputing in civil infrastructure. Sci. Iran. 23(6), 2417–2428 (2016)

    Google Scholar 

  20. Mauludin, L.M.; Oucif, C.: Computational modeling of fracture in concrete: a review. Front. Struct. Civ. Eng. 14, 586–598 (2020)

    Article  Google Scholar 

  21. Ding, Z.; An, X.: Deep learning approach for estimating workability of self-compacting concrete from mixing image sequences. Adv. Mater. Sci. Eng. 2018 (2018)

  22. Ghafari, E.; Bandarabadi, M.; Costa, H.; Júlio, E.: Prediction of fresh and hardened state properties of UHPC: comparative study of statistical mixture design and an artificial neural network model. J. Mater. Civ. Eng. 27(11), 04015017 (2015)

    Article  Google Scholar 

  23. Erdal, H.; Erdal, M.; Şimşek, O.; Erdal, H.İ: Prediction of concrete compressive strength using non-destructive test results. Comput. Concr. 21(4), 407–417 (2018)

    Google Scholar 

  24. Altinkok, N.; Koker, R.: Modelling of the prediction of tensile and density properties in particle reinforced metal matrix composites by using neural networks. Mater. Des. 27(8), 625–631 (2006)

    Article  Google Scholar 

  25. Jiang, G.; Keller, J.; Bond, P.L.; Yuan, Z.: Predicting concrete corrosion of sewers using artificial neural network. Water Res. 92, 52–60 (2016)

    Article  Google Scholar 

  26. Rasul, M.; Hosoda, A.; Maekawa, K.: Prediction of maximum thermal crack width of RC abutments utilizing actual construction data and study on influential parameters using neural networks. Constr. Build. Mater. 260, 120477 (2020)

    Article  Google Scholar 

  27. Rasul, M.; Hosoda, A.: Prediction of occurrence of thermal cracking of RC abutments using artificial neural networks. J. Struct. Eng. 65, 560–568 (2019)

    Google Scholar 

  28. Nasir, M.; Gazder, U.; Maslehuddin, M.; Baghabra Al-Amoudi, O.S.; Syed, I.A.: Prediction of properties of concrete cured under hot weather using multivariate regression and ANN models. Arab. J. Sci. Eng. 45(5), 4111–4123 (2020)

    Article  Google Scholar 

  29. ASTM C150-19: Standard Specification for Portland Cement. ASTM International, West Conshohocken, PA (2019)

    Google Scholar 

  30. Hossain, M.M.; Karim, M.R.; Hasan, M.; Hossain, M.K.; Zain, M.F.M.: Durability of mortar and concrete made up of pozzolans as a partial replacement of cement: a review. Constr. Build. Mater. 116, 128–140 (2016)

    Article  Google Scholar 

  31. Khan, M.I.; Siddique, R.: Utilization of silica fume in concrete: review of durability properties. Resour. Conserv. Recycl. 57, 30–35 (2011)

    Article  Google Scholar 

  32. Özbay, E.; Erdemir, M.; Durmuş, H.I.: Utilization and efficiency of ground granulated blast furnace slag on concrete properties - a review. Constr. Build. Mater. 105, 423–434 (2016)

    Article  Google Scholar 

  33. Akkaya, Y.; Ouyang, C.; Shah, S.P.: Effect of supplementary cementitious materials on shrinkage and crack development in concrete. Cem. Concr. Compos. 29(2), 117–123 (2007)

    Article  Google Scholar 

  34. Filazi, A.; Demir, İ; Sevim, O.: Enhancement on mechanical and durability performances of binary cementitious systems by optimizing particle size distribution of fly ash. Arch. Civ. Mech. Eng. 20(2), 1–13 (2020)

    Article  Google Scholar 

  35. ASTM C33-18: Standard Specifications for Coarse Aggregates. ASTM International, West Conshohocken, PA (2019)

    Google Scholar 

  36. ASTM C494-19: Standard Specification for Chemical Admixtures for Concrete. ASTM International, West Conshohocken, PA (2019)

    Google Scholar 

  37. ASTM C192-14: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, West Conshohocken, PA (2014)

    Google Scholar 

  38. BS 1881–116.: Method for Determination of Compressive Strength of Concrete Cubes (1991)

  39. Binder, J.J.: On the use of the multivariate regression model in event studies. J. Account. Res. 23(1), 370–383 (1985)

    Article  Google Scholar 

  40. Craven, B.D.; Islam, S.M.: Ordinary Least-Squares Regression. Sage Publication, California (2011)

    Google Scholar 

  41. Ives, A.R.: For testing the significance of regression coefficients, go ahead and log transform count data. Methods Ecol. Evol. 6(7), 828–835 (2015)

    Article  Google Scholar 

  42. Yegnanarayana, B.: Artificial Neural Network. PHI Learning Pvt. Ltd., Delhi (2011)

    Google Scholar 

  43. Xu, S.; He, X.: Process Neural Networks: Theory and Applications. Springer Science & Business Media, New York (2010)

    Google Scholar 

  44. Huang, G.B.; Zhu, Q.Y.; Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings. 2004 IEEE International Joint Conference on Neural Networks, pp. 985–90 (2004)

  45. Dawson, C.W.; Wilby, R.: An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 43(1), 47–66 (1998)

    Article  Google Scholar 

  46. Wang, L.; Zeng, Y.; Chen, T.: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 42(2), 855–863 (2015)

    Article  Google Scholar 

  47. Gazder, U.; Al-Amoudi, O.S.B.; Khan, S.M.S.; Maslehuddin, M.: Predicting compressive strength of blended cement concrete with ANNs. Comput. Concr. 20(6), 627–634 (2018)

    Google Scholar 

  48. Ebrahimzadeh, A.; Ahmadi, M.; Safarnejad, M.: Classification of ECG signals using Hermite functions and MLP neural networks. J. Artif. Data Min. 4(1), 55–65 (2016)

    Google Scholar 

  49. Alwakeel, M.; Shaaban, M.: Face recognition based on Haar wavelet transform and principal component analysis via Levenberg-Marquardt backpropagation neural network. Eur. J. Sci. Res. 42(1), 25–31 (2010)

    Google Scholar 

  50. Sapna, S.; Tamilarasi, A.; Kumar, M.P.: Backpropagation learning algorithm based on Levenberg Marquardt Algorithm. Comp Sci. Inf. Technol. (CS IT) 2, 393–398 (2012)

    Google Scholar 

  51. Jin, R.; Chen, W.; Simpson, T.W.: Comparative studies of meta-modelling techniques under multiple modelling criteria. Struct. Multidiscip. Optim. 23(1), 1–13 (2001)

    Article  Google Scholar 

  52. Willmott, C.J.; Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

  53. Shariq, M.; Prasad, J.; Masood, A.: Studies in ultrasonic pulse velocity of concrete containing GGBFS. Constr. Build. Mater. 40, 944–950 (2013)

    Article  Google Scholar 

  54. Gevrey, M.; Dimopoulos, I.; Lek, S.: Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Modell. 160(3), 249–264 (2003)

    Article  Google Scholar 

  55. Kim, J.K.; Moon, Y.H.; Eo, S.H.: Compressive strength development of concrete with different curing time and temperature. Cem. Concr. Res. 28(12), 1761–1773 (1998)

    Article  Google Scholar 

  56. Yazıcı, H.: The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Build. Environ. 42(5), 2083–2089 (2007)

    Article  Google Scholar 

  57. Al-Gahtani, A.S.: Effect of Curing Methods on the Properties of Plain and Blended Cement Concretes. Constr. Build. Mater. 24, 308–314 (2010)

    Article  Google Scholar 

  58. Akbari, M.; Jafari, V.: Data driven models for compressive strength prediction of concrete at high temperatures. Front. Struct. Civ. Eng. 14, 311–321 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by King Fahd University of Petroleum and Minerals (KFUPM) under KFUPM research Grant # RG1101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehboob Rasul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, M., Gazder, U., Khan, M.U. et al. Prediction of Strength of Plain and Blended Cement Concretes Cured Under Hot Weather Using Quadratic Regression and ANN Tools. Arab J Sci Eng 47, 12697–12709 (2022). https://doi.org/10.1007/s13369-022-06586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06586-y

Keywords

Navigation