Skip to main content
Log in

Evaluation of the Structure–Micromorphology Relationship of Co10%–Alx Co-doped Zinc Oxide Nanostructured Thin Films Deposited by Pulsed Laser Using XRD and AFM

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The structure–morphology relationship of (Co, Al) co-doped ZnO thin films was investigated. This system was chosen because of its potential in several technological applications such as solar cells, transparent electrodes, ultraviolet light-emitting devices, ferromagnetism, and so on. The films were deposited via pulsed laser deposition using aerogel nanopowder targets. The structure and microstructure of the nanopowders were investigated by X-ray diffraction and transmission electron microscopy that revealed nanoparticles with wurtzite-like structure, crystallites ranging from 30.7 to 23.4 nm, and prismatic shape. The fabricated films have a thickness of ~ 300 nm, and there is a preferential orientation in the (002) direction. Atomic force microscopy topographical maps reveal that the film surface grains decrease when the aluminum (Al) content increases, but the roughness does not present a significant variation. The texture isotropy and fractal dimension of the films increase for higher Al contents. The combination of these results reveals that there is a structure–micromorphology dependence promoted by the insertion of Al in the ZnO lattice, which can be useful to find unique manufacture patterns in devices based on this semiconductor film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sluiter, M.H.F.; Kawazoe, Y.; Sharma, P.; Inoue, A.; Raju, A.R.; Rout, C.; Waghmare, U.V.: First principles based design and experimental evidence for a Zno-based ferromagnet at room temperature. Phys. Rev. Lett. 94, 187204 (2005). https://doi.org/10.1103/PhysRevLett.94.187204

    Article  Google Scholar 

  2. Ben Ayadi, Z.; Mahdhi, H.; Djessas, K.; Gauffier, J.L.; El Mir, L.; Alaya, S.: Sputtered Al-doped ZnO transparent conducting thin films suitable for silicon solar cells. Thin Solid Films 553, 123–126 (2014). https://doi.org/10.1016/j.tsf.2013.11.120

    Article  Google Scholar 

  3. El Ghoul, J.; Kraini, M.; Lemine, O.M.; El Mir, L.: Sol–gel synthesis, structural, optical and magnetic properties of Co-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 26, 2614–2621 (2015). https://doi.org/10.1007/s10854-015-2732-x

    Article  Google Scholar 

  4. Sharma, D.K.; Shukla, S.; Sharma, K.K.; Kumar, V.: A review on ZnO: fundamental properties and applications. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.10.238

    Article  Google Scholar 

  5. Mia, M.N.H.; Habiba, U.; Pervez, M.F.; Kabir, H.; Nur, S.; Hossen, M.F.; Sen, S.K.; Hossain, M.K.; Iftekhar, M.A.; Rahman, M.M.: Investigation of aluminum doping on structural and optical characteristics of sol–gel assisted spin-coated nano-structured zinc oxide thin films. Appl. Phys. A. 126, 162 (2020). https://doi.org/10.1007/s00339-020-3332-z

    Article  Google Scholar 

  6. Prerna Arya, S.; Sharma, A.; Singh, B.; Tomar, A.; Singh, S.; Sharma, R.: Morphological and optical characterization of sol-gel synthesized ni-doped ZnO nanoparticles. Integr. Ferroelectr. 205, 1–13 (2020). https://doi.org/10.1080/10584587.2019.1674992

    Article  Google Scholar 

  7. Balasubramaniam, M.; Balakumar, S.: A review on multifunctional attributes of zinc antimonate nanostructures towards energy and environmental applications. Chem. Pap. 74, 55–75 (2020). https://doi.org/10.1007/s11696-019-00964-x

    Article  Google Scholar 

  8. Kayani, Z.N.; Sahar, M.; Riaz, S.; Naseem, S.; Saddiqe, Z.: Enhanced magnetic, antibacterial and optical properties of Sm doped ZnO thin films: role of Sm doping. Opt. Mater. (Amst). 108, 110457 (2020). https://doi.org/10.1016/j.optmat.2020.110457

    Article  Google Scholar 

  9. Kazmi, J.; Ooi, P.C.; Goh, B.T.; Lee, M.K.; Razip Wee, M.F.M.; Shafura, A.; Karim, S.; Ali Raza, S.R.; Mohamed, M.A.: Bi-doping improves the magnetic properties of zinc oxide nanowires. RSC Adv. 10, 23297–23311 (2020). https://doi.org/10.1039/D0RA03816D

    Article  Google Scholar 

  10. Khan, M.S.; Shi, L.; Zou, B.: First principles calculations of optoelectronic and magnetic properties of Co-doped and (Co, Al) co-doped ZnO. J. Appl. Phys. 127, 065707 (2020). https://doi.org/10.1063/1.5143487

    Article  Google Scholar 

  11. Samanta, A.; Goswami, M.N.; Mahapatra, P.K.: Fe-doped ZnO nanoparticles as novel photonic and multiferroic semiconductor. Mater. Chem. Phys. 240, 122180 (2020). https://doi.org/10.1016/j.matchemphys.2019.122180

    Article  Google Scholar 

  12. Kayani, Z.N.; Nazli, H.; Kousar, S.; Riaz, S.; Naseem, S.: Dip-coated V doped ZnO thin films: dielectric and magnetic properties. Ceram. Int. 46, 14605–14612 (2020). https://doi.org/10.1016/j.ceramint.2020.02.261

    Article  Google Scholar 

  13. Gomaa, M.M.; Sayed, M.H.; Chikoidze, E.; Dumont, Y.; Boshta, M.: V-doped ZnO diluted magnetic semiconductor prepared by chemical spray pyrolysis. Mater. Sci. Semicond. Process. 109, 104944 (2020). https://doi.org/10.1016/j.mssp.2020.104944

    Article  Google Scholar 

  14. Salameh, B.; Alsmadi, A.M.; Shatnawi, M.: Effects of Co concentration and annealing on the magnetic properties of Co-doped ZnO films: role of oxygen vacancies on the ferromagnetic ordering. J. Alloys Compd. 835, 155287 (2020). https://doi.org/10.1016/j.jallcom.2020.155287

    Article  Google Scholar 

  15. Anbuselvan, D.; Nilavazhagan, S.; Santhanam, A.; Chidhambaram, N.; Gunavathy, K.V.; Ahamad, T.; Alshehri, S.M.: Room temperature ferromagnetic behavior of nickel-doped zinc oxide dilute magnetic semiconductor for spintronics applications. Phys. E Low-dimens. Syst. Nanostruct. 129, 114665 (2021). https://doi.org/10.1016/j.physe.2021.114665

    Article  Google Scholar 

  16. Srinet, G.; Sharma, S.; Guerrero-Sanchez, J.; Garcia-Diaz, R.; Ponce-Perez, R.; Siqueiros, J.M.; Raymond Herrera, O.: Room-temperature ferromagnetism on ZnO nanoparticles doped with Cr: an experimental and theoretical analysis. J. Alloys Compd. 849, 156587 (2020). https://doi.org/10.1016/j.jallcom.2020.156587

    Article  Google Scholar 

  17. Nouiri, M.; Guefreche, A.; Djessas, K.; El Mir, L.: Highlighting the Au/TiO2 role in the memory effect of Au/TiO2/ITO/ZnO:Al/p-Si heterostructure. J. Mater. Sci. Mater. Electron. 31, 7084–7092 (2020). https://doi.org/10.1007/s10854-020-03278-x

    Article  Google Scholar 

  18. Das, A.; Guha Roy, P.; Dutta, A.; Sen, S.; Pramanik, P.; Das, D.; Banerjee, A.; Bhattacharyya, A.: Mg and Al co-doping of ZnO thin films: effect on ultraviolet photoconductivity. Mater. Sci. Semicond. Process. 54, 36–41 (2016). https://doi.org/10.1016/j.mssp.2016.06.018

    Article  Google Scholar 

  19. Dinia, A.; Schmerber, G.; Mény, C.; Pierron-Bohnes, V.; Beaurepaire, E.: Room-temperature ferromagnetism in Zn1−xCoxO magnetic semiconductors prepared by sputtering. J. Appl. Phys. 97, 123908 (2005). https://doi.org/10.1063/1.1937478

    Article  Google Scholar 

  20. Jaballah, S.; Dahman, H.; Ghiloufi, I.; Neri, G.; El Mir, L.: Facile synthesis of Al–Mg co-doped ZnO nanoparticles and their high hydrogen sensing performances. Int. J. Hydrog. Energy. 45, 34268–34280 (2020). https://doi.org/10.1016/j.ijhydene.2020.09.053

    Article  Google Scholar 

  21. El Mir, L.; Ayadi, Z.B.; Saadoun, M.; Djessas, K.; von Bardeleben, H.J.; Alaya, S.: Preparation and characterization of n-type conductive (Al, Co) co-doped ZnO thin films deposited by sputtering from aerogel nanopowders. Appl. Surf. Sci. 254, 570–573 (2007). https://doi.org/10.1016/j.apsusc.2007.06.028

    Article  Google Scholar 

  22. Romaguera-Barcelay, Y.; Ţălu, Ş; Matos, R.S.; Oliveira, R.M.P.B.; Moreira, J.A.; de Cruz, J.P.; da Fonseca Filho, H.D.: Fractal-stereometric correlation of nanoscale spatial patterns of GdMnO3 thin films deposited by spin coating. Appl. Sci. 11, 3886 (2021). https://doi.org/10.3390/app11093886

    Article  Google Scholar 

  23. Romaguera-Barcelay, Y.; Pedraça, A.S.; Moreira, J.A.; Almeida, A.; Tavares, P.B.; Brito, W.R.; Matos, R.S.; Pires, M.A.; Pinto, E.P.; da Fonseca Filho, H.D.: Evaluation of nanostructured BiZn0.5Ti0.5O3 thin films deposited by RF magnetron sputtering. Mater. Sci. Eng. B. 267, 115090 (2021). https://doi.org/10.1016/j.mseb.2021.115090

    Article  Google Scholar 

  24. Barcelay, Y.R.; Moreira, J.A.G.; de Jesus Monteiro Almeida, A.; Brito, W.R.; Matos, R.S.; da Fonseca Filho, H.D.: Nanoscale stereometric evaluation of BiZn0.5Ti0.5O3 thin films grown by RF magnetron sputtering. Mater. Lett. 279, 128477 (2020). https://doi.org/10.1016/j.matlet.2020.128477

    Article  Google Scholar 

  25. Yang, M.; Yang, Y.; Liu, Q.; Zhou, H.; Han, J.; Xie, X.; Xiu, F.; Gou, J.; Wu, Z.; Hu, Z.; Yu, T.; Wang, J.; Jiang, Y.: A 3D topological Dirac semimetal/MoO 3 thin film heterojunction infrared photodetector with a current reversal phenomenon. J. Mater. Chem. C. 8, 16024–16031 (2020). https://doi.org/10.1039/D0TC03374J

    Article  Google Scholar 

  26. Sangeetha, N.M.; Moutet, P.; Lagarde, D.; Sallen, G.; Urbaszek, B.; Marie, X.; Viau, G.; Ressier, L.: 3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: creation of anti-counterfeiting microtags. Nanoscale 5, 9587 (2013). https://doi.org/10.1039/c3nr02734a

    Article  Google Scholar 

  27. Mwema, F.M.; Oladijo, O.P.; Sathiaraj, T.S.; Akinlabi, E.T.: Atomic force microscopy analysis of surface topography of pure thin aluminum films. Mater. Res. Express. 5, 046416 (2018). https://doi.org/10.1088/2053-1591/aabe1b

    Article  Google Scholar 

  28. Kocjan, A.; Ambrožič, M.; Kosmač, T.: Stereometric analysis of nanostructured boehmite coatings synthesized by aluminum nitride powder hydrolysis. Ceram. Int. 38, 4853–4859 (2012). https://doi.org/10.1016/j.ceramint.2012.02.075

    Article  Google Scholar 

  29. Stach, S.; Cybo, J.: Multifractal detection of overlaps based on a stereometric analysis of a fracture surface: assumptions. Mater. Charact. 56, 449–453 (2006). https://doi.org/10.1016/j.matchar.2006.01.009

    Article  Google Scholar 

  30. Das, A.K.: Stereometric analysis and relation between the porosity of sprayed and sintered NiCrSiB plasma spray protective coating. J. Mater. Process. Technol. 101, 322–331 (2000). https://doi.org/10.1016/S0924-0136(99)00475-6

    Article  Google Scholar 

  31. Kanafi, M.M.; Kuosmanen, A.; Pellinen, T.K.; Tuononen, A.J.: Macro-and micro-texture evolution of road pavements and correlation with friction. Int. J. Pavement Eng. 16, 168–179 (2015). https://doi.org/10.1080/10298436.2014.937715

    Article  Google Scholar 

  32. Raoufi, D.; Hosseinpanahi, F.; Raoufi, D.; Hosseinpanahi, F.: Surface morphology dynamics in ITO thin films. J. Mod. Phys. 03, 645–651 (2012). https://doi.org/10.4236/jmp.2012.38088

    Article  Google Scholar 

  33. Gambardella, A.; Berni, M.; Russo, A.; Bianchi, M.: A comparative study of the growth dynamics of zirconia thin films deposited by ionized jet deposition onto different substrates. Surf. Coat. Technol. 337, 306–312 (2018). https://doi.org/10.1016/j.surfcoat.2018.01.026

    Article  Google Scholar 

  34. Puli, V.S.; Pradhan, D.K.; Adireddy, S.; Martínez, R.; Silwal, P.; Scott, J.F.; Ramana, C.V.; Chrisey, D.B.; Katiyar, R.S.: Nanoscale polarisation switching and leakage currents in (Ba 0.955 Ca 0.045) (Zr 0.17 Ti 0.83) O 3 epitaxial thin films. J. Phys. D. Appl. Phys. 48, 355502 (2015). https://doi.org/10.1088/0022-3727/48/35/355502

    Article  Google Scholar 

  35. Zhang, F.; Edwards, D.; Deng, X.; Wang, Y.; Kilpatrick, J.I.; Bassiri-Gharb, N.; Kumar, A.; Chen, D.; Gao, X.; Rodriguez, B.J.: Investigation of AFM-based machining of ferroelectric thin films at the nanoscale. J. Appl. Phys. 127, 034103 (2020). https://doi.org/10.1063/1.5133018

    Article  Google Scholar 

  36. Zhang, Y.; Zuo, J.; Li, P.; Gao, Y.; He, W.; Zheng, Z.: Study of the nanoscale electrical performance of NiO thin films by C-AFM and KPFM techniques: the effect of grain boundary barrier. Phys. E Low-dimens. Syst. Nanostructures. 111, 75–78 (2019). https://doi.org/10.1016/j.physe.2019.03.005

    Article  Google Scholar 

  37. Silveira, I.S.; Ferreira, N.S.; Souza, D.N.: Structural, morphological and vibrational properties of LaAlO3 nanocrystals produced by four different methods. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.06.201

    Article  Google Scholar 

  38. Surf, D.: MountainsMap Premium 8.0. , Besançon (2020)

  39. ISO: ISO 25178–2:2012—Geometrical product specifications (GPS)—surface texture: areal—part 2: terms, definitions and surface texture parameters, https://www.iso.org/standard/42785.html

  40. Mandelbrot, B.B.; Wheeler, J.A.: The fractal geometry of nature. Am. J. Phys. 51, 286–287 (1983). https://doi.org/10.1119/1.13295

    Article  Google Scholar 

  41. Chen, Y.; Bagnall, D.M.; Koh, H.; Park, K.; Hiraga, K.; Zhu, Z.; Yao, T.: Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: growth and characterization. J. Appl. Phys. 84, 3912–3918 (1998). https://doi.org/10.1063/1.368595

    Article  Google Scholar 

  42. Voicu, G.; Miu, D.; Ghitulica, C.-D.; Jinga, S.-I.; Nicoara, A.-I.; Busuioc, C.; Holban, A.-M.: Co doped ZnO thin films deposited by spin coating as antibacterial coating for metallic implants. Ceram. Int. 46, 3904–3911 (2020). https://doi.org/10.1016/j.ceramint.2019.10.118

    Article  Google Scholar 

  43. Gao, F.; Zhang, R.; Ma, F.; Liu, B.; Zhang, M.; Yang, J.: Synthesis, characterization and application of ZnO and Ag-doped ZnO nanostructures against human liver cells (HepG2). A suitable candidate for valproate. Chem. Pap. 75, 2191–2196 (2021). https://doi.org/10.1007/s11696-020-01456-z

    Article  Google Scholar 

  44. Momma, K.; Izumi, F.: VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008). https://doi.org/10.1107/S0021889808012016

    Article  Google Scholar 

  45. Sharma, B.K.; Khare, N.: Stress-dependent band gap shift and quenching of defects in Al-doped ZnO films. J. Phys. D. Appl. Phys. 43, 465402 (2010). https://doi.org/10.1088/0022-3727/43/46/465402

    Article  Google Scholar 

  46. Ferreira, N.S.; Sasaki, J.M.; Silva, J.R.R.S.; Attah-Baah, J.M.; Macêdo, M.A.: Visible-light-responsive photocatalytic activity significantly enhanced by active [V Zn + V O +] defects in self-assembled ZnO nanoparticles. Inorg. Chem. 60, 4475–4496 (2021). https://doi.org/10.1021/acs.inorgchem.0c03327

    Article  Google Scholar 

  47. Ben Ayadi, Z.; El Mir, L.; Djessas, K.; Alaya, S.: Electrical and optical properties of aluminum-doped zinc oxide sputtered from an aerogel nanopowder target. Nanotechnology 18, 445702 (2007). https://doi.org/10.1088/0957-4484/18/44/445702

    Article  Google Scholar 

  48. Trang, T.N.Q.; Phan, T.B.; Nam, N.D.; Thu, V.T.H.: In situ charge transfer at the Ag@ZnO photoelectrochemical interface toward the high photocatalytic performance of H 2 evolution and RhB degradation. ACS Appl. Mater. Interfaces 12, 12195–12206 (2020). https://doi.org/10.1021/acsami.9b15578

  49. Algün, G.; Akçay, N.: Enhanced sensing characteristics of relative humidity sensors based on Al and F co-doped ZnO nanostructured thin films. J. Mater. Sci. Mater. Electron. 30, 16124–16134 (2019). https://doi.org/10.1007/s10854-019-01982-x

    Article  Google Scholar 

  50. Vijayakumar, Y.; Nagaraju, P.; Yaragani, V.; Parne, S.R.; Awwad, N.S.; Ramana Reddy, M.V.: Nanostructured Al and Fe co-doped ZnO thin films for enhanced ammonia detection. Phys. B Condens. Matter. 581, 411976 (2020). https://doi.org/10.1016/j.physb.2019.411976

    Article  Google Scholar 

  51. Xu, Z.Q.; Deng, H.; Li, Y.; Guo, Q.H.; Li, Y.R.: Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method. Mater. Res. Bull. 41, 354–358 (2006). https://doi.org/10.1016/j.materresbull.2005.08.014

    Article  Google Scholar 

  52. Arun Kumar, K.D.; Valanarasu, S.; Kathalingam, A.; Jeyadheepan, K.: Nd3+ Doping effect on the optical and electrical properties of SnO2 thin films prepared by nebulizer spray pyrolysis for opto-electronic application. Mater. Res. Bull. 101, 264–271 (2018). https://doi.org/10.1016/j.materresbull.2018.01.050

    Article  Google Scholar 

  53. Cao, P.; Bai, Y.: Structure and magnetic properties of (Al, Co) co-doped ZnO thin films. Key Eng. Mater. 531–532, 299–302 (2012). https://doi.org/10.4028/www.scientific.net/KEM.531-532.299

    Article  Google Scholar 

  54. Samoshkina, Y.E.; Edelman, I.S.; Chou, H.; Lin, H.-C.; Dwivedi, G.D.; Petrov, D.A.; Zharkov, S.M.; Zeer, G.M.; Molokeev, M.S.: Structure and physical properties of hydrogenated (Co + Al)-doped ZnO films: comparative study with co-doped ZnO films. Mater. Sci. Eng. B. 264, 114943 (2021). https://doi.org/10.1016/j.mseb.2020.114943

    Article  Google Scholar 

  55. Lekshmy, S.S.; Daniel, G.P.; Joy, K.: Microstructure and physical properties of sol gel derived SnO2: Sb thin films for optoelectronic applications. Appl. Surf. Sci. 274, 95–100 (2013). https://doi.org/10.1016/j.apsusc.2013.02.109

    Article  Google Scholar 

  56. Matos, R.S.; Pinheiro, B.S.; Souza, I.S.; de Paes Castro, R.R.; Ramos, G.Q.; Pinto, E.P.; Silva, R.S.; da Fonseca Filho, H.D.: 3D micromorphology evaluation of kefir microbial films loaded with extract of Amazon rainforest fruit Cupuaçu. Micron 142, 102996 (2021). https://doi.org/10.1016/j.micron.2020.102996

    Article  Google Scholar 

  57. Franco, L.A.; Sinatora, A.: 3D surface parameters (ISO 25178–2): Actual meaning of Spk and its relationship to Vmp. Precis. Eng. 40, 106–111 (2015). https://doi.org/10.1016/j.precisioneng.2014.10.011

    Article  Google Scholar 

  58. Kundrak, J.; Gyani, K.; Bana, V.: Roughness of ground and hard-turned surfaces on the basis of 3D parameters. Int. J. Adv. Manuf. Technol. 38, 110–119 (2008). https://doi.org/10.1007/s00170-007-1086-9

    Article  Google Scholar 

  59. Kilic, K.I.; Abiyev, R.H.: Exploiting the synergy between fractal dimension and lacunarity for improved texture recognition. Signal Process. 91, 2332–2344 (2011). https://doi.org/10.1016/j.sigpro.2011.04.018

    Article  MATH  Google Scholar 

  60. Li, Y.; Yang, J.; Pan, Z.; Tong, W.: Nanoscale pore structure and mechanical property analysis of coal: an insight combining AFM and SEM images. Fuel 260, 116352 (2020). https://doi.org/10.1016/j.fuel.2019.116352

    Article  Google Scholar 

  61. Mwema, F.M.; Akinlabi, E.T.; Oladijo, O.P.: Dependence of fractal characteristics on the scan size of atomic force microscopy (AFM) phase imaging of aluminum thin films. Mater. Today Proc. 26, 1540–1545 (2020). https://doi.org/10.1016/j.matpr.2020.02.316

    Article  Google Scholar 

  62. Zhou, W.; Li, X.; Feng, F.; Qu, T.; Huang, J.; Qian, X.; Zha, H.; Feng, P.: Robustness of surface roughness against low number of picture elements and its benefit for scaling analysis. Coatings 10, 776 (2020). https://doi.org/10.3390/coatings10080776

    Article  Google Scholar 

  63. Movassagh, A.; Haghighi, M.; Zhang, X.; Kasperczyk, D.; Sayyafzadeh, M.: A fractal approach for surface roughness analysis of laboratory hydraulic fracture. J. Nat. Gas Sci. Eng. 85, 103703 (2021). https://doi.org/10.1016/j.jngse.2020.103703

    Article  Google Scholar 

  64. Mwema, F.M.; Akinlabi, E.T.; Oladijo, O.P.: The use of power spectrum density for surface characterization of thin films. In: Photoenergy and Thin Film Materials. pp. 379–411. Wiley, Hoboken, NJ, USA (2019)

  65. Kumar, M.; Singh, B.; Yadav, P.; Bhatt, V.; Kumar, M.; Singh, K.; Abhyankar, A.C.; Kumar, A.; Yun, J.-H.: Effect of structural defects, surface roughness on sensing properties of Al doped ZnO thin films deposited by chemical spray pyrolysis technique. Ceram. Int. 43, 3562–3568 (2017). https://doi.org/10.1016/j.ceramint.2016.11.191

    Article  Google Scholar 

  66. Aydın, H.; Yakuphanoglu, F.; Aydın, C.: Al-doped ZnO as a multifunctional nanomaterial: structural, morphological, optical and low-temperature gas sensing properties. J. Alloys Compd. 773, 802–811 (2019). https://doi.org/10.1016/j.jallcom.2018.09.327

    Article  Google Scholar 

  67. Singh, C.C.; Panda, E.: Zinc interstitial threshold in Al-doped ZnO film: Effect on microstructure and optoelectronic properties. J. Appl. Phys. 123, 165106 (2018). https://doi.org/10.1063/1.5021736

    Article  Google Scholar 

Download references

Funding

This work was funded by the National Plan for Sciences, Technology, and Innovation (MAARIFAH)—King Abdulaziz City for Sciences and Technology—Kingdom of Saudi Arabia, award number: 13-NAN517-08.

Author information

Authors and Affiliations

Authors

Contributions

FG contributed to conceptualization, data curation, investigation, methodology, and writing—original draft. NK helped in conceptualization and writing—original draft. SM contributed to formal analysis, resources, and writing—review and editing. IG and ŞŢ contributed to formal analysis, methodology, software, and writing—review and editing. LMEM and RMPBO performed methodology and writing—review and editing. HDFF was involved in investigation, methodology, and writing—original draft. RSM helped in conceptualization, project administration, validation, visualization, conceptualization, and writing—original draft. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ştefan Ţălu or Robert Saraiva Matos.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghribi, F., Khalifi, N., Mrabet, S. et al. Evaluation of the Structure–Micromorphology Relationship of Co10%–Alx Co-doped Zinc Oxide Nanostructured Thin Films Deposited by Pulsed Laser Using XRD and AFM. Arab J Sci Eng 47, 7717–7728 (2022). https://doi.org/10.1007/s13369-022-06568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06568-0

Keywords

Navigation