Skip to main content
Log in

Optimized Resource Allocation for Fog Network using Neuro-fuzzy Offloading Approach

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Fog computing has emerged as one of the most important Internet infrastructures for improving service quality, particularly in real-time applications. Due to the convergence in technologies, the scope of the Internet of things (IoT) has evolved to a new dimension, it expands from data collection to device interconnections, and to pre-processing. This acceleration involves cloud and fog computing layers into the system which plays an integral role in IoT data storage and computing. Due to the diversity present in IoT devices, selection of computation devices and allocation of resources are major challenges to be addressed for efficient utilization of resources. In this paper, we presented the offloading and resource allocation model to address the solution to the above challenge. Firstly, a 5-layered neuro-fuzzy model is introduced to retrieve the fuzzy sets and rules which further passes to the fuzzy inference system to model an orchestration decision system. Additionally, to improve the system performance, we have presented the modified least loaded resource allocation algorithm which is adaptively required to reduce the failure rate of the applications. To showcase the efficacy of the model, 4 healthcare applications (augmented reality, patient pre-monitoring, record analysis, and billing systems) are evaluated with their heterogeneous parameters. The simulation findings show that our suggested model improves system performance by lowering network latency by 2.23–9.68 %, computation delay by 3.40–13.66 %, and system performance by 1.03–11.55%. The simulation results demonstrated the suggested model’s resilience in terms of network latency, computation time, and failure rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Augmented Reality applications have potential uses in medical education, training, surgical planning.

  2. Most popular application for recording initial medical records of a person.

  3. Can be utilized to gather the patient history on single click.

  4. LAN delay is considered as the delay from device layer to Middle (fog node) layer and WAN delay is considered as the delay between fog layer and cloud layer (in seconds).

References

  1. Chaudhary, R.; Kumar, N.; Zeadally, S.: Network service chaining in fog and cloud computing for the 5G environment: data management and security challenges. IEEE Commun. Mag. 55(11), 114–122 (2017)

    Article  Google Scholar 

  2. Lin, K.; Pankaj, S.; Wang, D.: Task offloading and resource allocation for edge-of-things computing on smart healthcare systems. J. Comput. Electr. Eng. 72, 348–360 (2018)

    Article  Google Scholar 

  3. Chauhan, N.; Agarwal, R.; Garg, K.; Choudhury, T.: Redundant Iaas cloud selection with consideration of multi criteria decision analysis. Elsevier Proc. Comput. science 167, 1325–1333 (2020)

    Article  Google Scholar 

  4. Aceto, G.; Paersico, V.; Pescape, A.: Industry 4.0 and health: internet of things, big data, and cloud computing for healthcare 4.0. J. Ind. Info. Integr. 18, 100129 (2020)

    Google Scholar 

  5. Hu, P.; Dhelim, S.; Ning, H.; Qiu, T.: Survey on fog computing: architecture, key technologies, applications and open issues. J. Netw. Comput. App. 98, 27–42 (2017)

    Article  Google Scholar 

  6. Chen, M.; Li, W.; Hao, Y.; Qian, Y.; Humar, I.: Edge cognitive computing based smart healthcare system. Futur. Gener. Comput. Syst. 86, 403–411 (2018)

    Article  Google Scholar 

  7. Zhu, Q.; Si, B.; Yang, F.; Ma, Y.: Task offloading decision in fog computing system. China Commun. 14(11), 59–68 (2017)

    Article  Google Scholar 

  8. Ahmed, M.; Amin, M.B.; Hussain, S.; Kang, B.H.; Cheong, T.: Health fog: a novel framework for health and wellness applications. J. Supercomput. 72, 3677–3695 (2016)

    Article  Google Scholar 

  9. Kraemer, F.A.; Braten, A.E.; Tamkittikhun, N.; Palma, D.: Fog computing in healthcare-a review and discussion. IEEE Access 5, 9206–9222 (2017)

    Article  Google Scholar 

  10. Cerina, L.; Notargiacomo, S.; Paccanit, M.G.; Santambrogio, M.D.: A fog-computing architecture for preventive healthcare and assisted living in smart ambients, In: 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI). Modena 1–6 (2017)

  11. Cao, K.; Liu, Y.; Meng, G.; Sun, Q.: An overview on edge computing research. IEEE Access 8, 85714–85728 (2020)

    Article  Google Scholar 

  12. Hosseini, S. M.; Kazeminia, M.; Mehrjoo, M.; Barakati, S. M.: Fuzzy logic based mobile data offloading, In: 2015 23rd Iranian Conference on Electrical Engineering, Tehran, 397-401, (2015)

  13. Bhardwaj, A.; Krishna, C.R.: Virtualization in cloud computing: moving from hypervisor to containerization-a survey. Arab. J. Sci. Eng. 46, 8585–8601 (2021)

    Article  Google Scholar 

  14. Kashani, M.H.; Madanipour, M.; Nikravan, M.; Asghari, P.; Mahdipour, E.: A systematic review of IoT in healthcare: applications, techniques, and trends. J. Netw. Comp. Apps 192, 103164 (2021)

    Article  Google Scholar 

  15. Chauhan, N.; Banka, H.; Agrawal, R.: Adaptive bandwidth adjustment for resource constrained services in fog queueing system. Cluster Comput. 24, 3837–3850 (2021)

    Article  Google Scholar 

  16. Huaming, W.; Wu, H.; Sun, Y.; Wolter, K.: Energy-efficient decision making for mobile cloud offloading. IEEE Trans. Cloud Comput., 1–15 (2018)

  17. Mubeen, S.; Nikolaidis, P.; Didic, A.; Pei-Breivold, H.; Sandström, K.; Behnam, M.: Delay mitigation in offloaded cloud controllers in industrial IoT. IEEE Access 5, 4418–4430 (2017)

    Article  Google Scholar 

  18. Rehmani, A.M.; Gia, T.N.; Negash, B.; Anzanpour, A.; Azimi, I.; Jiang, M.; Liljeberg, P.: Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Futur. Genr. Comput. Syst. 78, 641–658 (2018)

    Article  Google Scholar 

  19. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L.: Edge computing: vision and challenges. IEEE Int. Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  20. Asemi, A.; Baba M.S.; Haji Abdullah, R.; Idris, N.: Fuzzy multi criteria decision making applications: a review study. In: Proceedings of the 3rd International Conference on Computer Engineering and Mathematical Sciences (ICCEMS 2014), 04-05 Dec (2014), Langkawi, Malaysia

  21. Tong, L.; Li, Y.; Gao, W.: A hierarchical edge cloud architecture for mobile computing, In: IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, pp 1-9, (2016)

  22. Vlamou, E.; Papadopoulos, B.: Fuzzy logic systems and medical applications. AIMS Neurosci. 6(4), 266–272 (2019)

    Article  Google Scholar 

  23. Souza, P.V.D.C.: Fuzzy neural networks and neuro-fuzzy networks: a review the main techniques and applications used in the literature, App. Soft Comput., vol. 92, (2020)

  24. Li, L.; Guan, Q.; Jin, L.; Guo, M.: Resource allocation and task offloading for heterogeneous real-time tasks with uncertain duration time in a fog queueing system. IEEE Access 7, 9912–9925 (2019)

    Article  Google Scholar 

  25. Mutlag, A.A.; Ghani, M.K.A.; Arunkumar, N.; Mohammed, M.A.; Mohd, O.: Enabling technologies for fog computing in healthcare IoT systems. Futur. Gener. Comput. Syst. 90, 62–78 (2019)

    Article  Google Scholar 

  26. Sehgal, A.; Agrawal, R.: Integrated network selection scheme for remote healthcare systems, In: 2014 Int. Conf. on Issues and Challenges in Intll. Compu. Techniques, 7-8 (2014)

  27. La, Q.D.; Ngo, M.V.; Dinh, T.Q.; Quek, T.Q.S.; Shin, H.: Enabling intelligence in fog computing to achieve energy and latency reduction. Digit. Comm. Netw. 5, 3–9 (2019)

    Article  Google Scholar 

  28. Farahani, B.; Firouzi, F.; Chang, V.; Badaroglu, M.; Constant, N.; Mankodiya, K.: Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Futur. Gener. Comput. Syst. 78, 659–676 (2018)

    Article  Google Scholar 

  29. Kumari, A.; Tanwar, S.; Tyagi, S.; Kumar, N.: Fog computing for healthcare 4.0 environment: opportunities and challenges. Comput. Electr. Eng. 72, 1–13 (2018)

    Article  Google Scholar 

  30. Yi, S.; Hao, Z.; Qin, Z.; Li, Q.: Fog Computing: Platform and Applications, In: Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb). Washington, DC 73–78 (2015)

  31. Sonmez, C.; Ozgovde, A.; Ersoy, C.: Fuzzy workload orchestration for edge computing. IEEE Trans. Netw. Serv. Manag. 16(2), 769–782 (2019)

    Article  Google Scholar 

  32. Hossain, M.D.; Sultana, T.; Hossain, M.A.; Hossain, M.I.; Huynh, L.N.T.; Park, J.; Huh, E.: Fuzzy decision-based efficient task offloading management scheme in multi-tier MEC-enabled networks. In Sensors 21(4), 1484 (2021)

    Article  Google Scholar 

  33. Nguyen, V.; Khanh, T.T.; Nguyen, T.D.T.; Hong, C.S.; Huh, E.: Flexible computation offloading in a fuzzy-based mobile edge orchestrator for IoT applications. J. Cloud Comput. 9(66), 1–18 (2020)

    Google Scholar 

  34. Chauhan, N.; Banka, H.; Agrawal, R.: Delay-aware application offloading in fog environment using multi-class Brownian model. Wireless Netw. 27, 4479–4495 (2021)

    Article  Google Scholar 

  35. Aslinezhad, M.; Malekijavan, A.; Abbasi, P.: Adaptive neuro-fuzzy modeling of a soft finger-like actuator for cyber-physical industrial systems. J. Supercomput. 77, 2624–2644 (2021)

    Article  Google Scholar 

  36. Thangaraj, V.; Somasundaram, M.S.B.: NFC-ARP: neuro-fuzzy controller for adaptive resource provisioning in virtualized environments. Neural Comput. Appl. 31, 7477–7488 (2019)

    Article  Google Scholar 

  37. Kour, H.; Manhas, J.; Sharma, V.: Usage and implementation of neuro-fuzzy systems for classification and prediction in the diagnosis of different types of medical disorders: a decade review. Artif. Intell. Rev. 53(7), 4651–4706 (2020)

    Article  Google Scholar 

  38. Al-Hmouz, A.; Shen, J.; Al-Hmouz, R.; Yan, J.: Modeling and simulation of an adaptive neuro-fuzzy inference system (ANFIS) for mobile learning. IEEE Trans. Learn. Technol. 5(3), 226–237 (2012)

    Article  Google Scholar 

  39. Sonmez, C.; Ozgovde, A.; Ersoy, C.: EdgeCloudSim: An environment for performance evaluation of Edge Computing systems, In: 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), Valencia, pp. 39-44, (2017)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, K., Chauhan, N. & Agrawal, R. Optimized Resource Allocation for Fog Network using Neuro-fuzzy Offloading Approach. Arab J Sci Eng 47, 10333–10346 (2022). https://doi.org/10.1007/s13369-022-06563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06563-5

Keywords

Navigation