Skip to main content

Advertisement

Log in

Axial Loading Effect on the Behavior of Large Helical Pile Groups in Sandy Soil

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The use of helical piles as a group to sustain large compressive loads has increased in the recent decade, and an appropriate evaluation of their behavior is essential for a robust design. Therefore, a sequence of analyses via numerical modeling was conducted to evaluate the behavior of helical pile groups of different geometries and configurations installed in sandy soil. The 3D nature of the problem was modeled using Midas GTS NX and was calibrated and validated against field data. In this study, 2 × 1, 2 × 2, 5-piles, and 3 × 3 double- and triple-helix free-standing pile groups in a symmetrical arrangement were considered. The group effect on the ultimate load capacity and the settlement of each group were expressed in terms of group efficiency and settlement ratio. The load-transfer mechanism and its variation with group configuration were also explored and presented. The results indicated that center-to-center pile spacing, number of piles, helix-to-shaft diameter ratio, number of helices, and the method used to interpret the test data significantly influenced the group efficiency and settlement ratio, being more significant in the latter compared with the former. Moreover, center-to-center pile spacing and embedment depth contributed to the shape of the load-transfer mechanism of helical pile groups. The results of this study can be used to better predict the behavior of helical pile groups in sandy soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhang, D.J.Y.: Predicting Capacity of helical screw piles in Alberta soils, https://doi.org/10.7939/R3BV7B59Z, (1999)

  2. Elkasabgy, M.; Naggar, M.H.E.: Axial compressive response of large-capacity helical and driven steel piles in cohesive soil. Can. Geotech. J. 52, 224–243 (2014). https://doi.org/10.1139/cgj-2012-0331

    Article  Google Scholar 

  3. Elsherbiny, Z.H.; El Naggar, M.H.: Axial compressive capacity of helical piles from field tests and numerical study. Can. Geotech. J. 50, 1191–1203 (2013). https://doi.org/10.1139/cgj-2012-0487

    Article  Google Scholar 

  4. Spagnoli, G.; de Tsuha, C.H.C.: A review on the behavior of helical piles as a potential offshore foundation system. Mar. Georesour. Geotechnol. 38, 1013–1036 (2020). https://doi.org/10.1080/1064119X.2020.1729905

    Article  Google Scholar 

  5. Sakr, M.: Performance of helical piles in oil sand. Can. Geotech. J. 46, 1046–1061 (2009). https://doi.org/10.1139/T09-044

    Article  Google Scholar 

  6. Harnish, J.; El Naggar, M.H.: Large-diameter helical pile capacity – torque correlations. Can. Geotech. J. 54, 968–986 (2017). https://doi.org/10.1139/cgj-2016-0156

    Article  Google Scholar 

  7. Mohajerani, A.; Bosnjak, D.; Bromwich, D.: Analysis and design methods of screw piles: a review. Soils Found. 56, 115–128 (2016). https://doi.org/10.1016/j.sandf.2016.01.009

    Article  Google Scholar 

  8. Lanyi-Bennett, S.A.; Deng, L.: Effects of inter-helix spacing and short-term soil setup on the behaviour of axially loaded helical piles in cohesive soil. Soils Found. 59, 337–350 (2019). https://doi.org/10.1016/j.sandf.2018.12.002

    Article  Google Scholar 

  9. Alwalan, M.F.; El Naggar, M.H.: Load-transfer mechanism of helical piles under compressive and impact loading. Int. J. Geomech. 21, 04021082 (2021). https://doi.org/10.1061/(asce)gm.1943-5622.0002037

    Article  Google Scholar 

  10. Vignesh, V.; Mayakrishnan, M.: Design parameters and behavior of helical piles in cohesive soils—a review. Arab. J. Geosci. (2020). https://doi.org/10.1007/s12517-020-06165-1

    Article  Google Scholar 

  11. Mahmoudi-Mehrizi, M.E.; Ghanbari, A.: A review of the advancement of helical foundations from 1990–2020 and the barriers to their expansion in developing countries. J. Eng. Geol. 14, 37–84 (2021)

    Google Scholar 

  12. Livneh, B.; El Naggar, M.H.: Axial testing and numerical modeling of square shaft helical piles under compressive and tensile loading. Can. Geotech. J. 45, 1142–1155 (2008). https://doi.org/10.1139/T08-044

    Article  Google Scholar 

  13. Salhi, L.; Nait-Rabah, O.; Deyrat, C.; Roos, C.: Numerical modeling of single helical pile behavior under compressive loading in sand. Electron. J. Geotech. Eng. 18, 4319–4338 (2013)

    Google Scholar 

  14. Papadopoulou, K.; Saroglou, H.; Papadopoulos, V.: Finite element analyses and experimental investigation of helical micropiles. Geotech. Geol. Eng. 32, 949–963 (2014). https://doi.org/10.1007/s10706-014-9771-6

    Article  Google Scholar 

  15. El Sharnouby, M.M.; El Naggar, M.H.: Numerical investigation of axial monotonic performance of reinforced helical pulldown micropiles. Int. J. Geomech. 18, 04018116 (2018). https://doi.org/10.1061/(asce)gm.1943-5622.0001161

    Article  Google Scholar 

  16. George, B.E.; Banerjee, S.; Gandhi, S.R.: Numerical analysis of helical piles in cohesionless soil. Int. J. Geotech. Eng. 14, 361–375 (2017). https://doi.org/10.1080/19386362.2017.1419912

    Article  Google Scholar 

  17. George, B.E.; Banerjee, S.; Gandhi, S.R.: Helical piles installed in cohesionless soil by displacement method. Int. J. Geomech. 19, 04019074 (2019). https://doi.org/10.1061/(asce)gm.1943-5622.0001457

    Article  Google Scholar 

  18. Garakani, A.A.; Maleki, J.: Load capacity of helical piles with different geometrical aspects in sandy and clayey soils: a numerical study. Sustain. Civ. Infrastruct. (2020). https://doi.org/10.1007/978-3-030-34178-7_7

    Article  Google Scholar 

  19. Alekseev, A.G.; Bezvolev, S.G.: In-situ customization of the helical pile design procedure using plaxis 2D. Soil Mech. Found. Eng. 57, 77–83 (2020). https://doi.org/10.1007/s11204-020-09640-9

    Article  Google Scholar 

  20. Türedi, Y.; Örnek, M.: Analysis of model helical piles subjected to axial compression. Gradjevinar 72, 759–769 (2020). https://doi.org/10.14256/JCE.2660.2019

    Article  Google Scholar 

  21. Soltani-Jigheh, H.; Zahedi, P.: Load Transfer mechanism of screw piles in sandy soils. Indian Geotech. J. 50, 871–879 (2020). https://doi.org/10.1007/s40098-020-00431-5

    Article  Google Scholar 

  22. Bak, H.M., Halabian, A.M., Hashemolhosseini, H., Rowshanzamir, M.: Axial response and material efficiency of tapered helical piles. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences (2021)

  23. Kurian, N.P.; Shah, S.J.: Studies on the behaviour of screw piles by the finite element method. Can. Geotech. J. 46, 627–638 (2009). https://doi.org/10.1139/T09-008

    Article  Google Scholar 

  24. Gavin, K.; Doherty, P.; Tolooiyan, A.: Field investigation of the axial resistance of helical piles in dense sand. Can. Geotech. J. 51, 1343–1354 (2014). https://doi.org/10.1139/cgj-2012-0463

    Article  Google Scholar 

  25. David, T.K.; Krishnamoorthy, R.R.; Mohamed Jais, I.B.: Finite element modelling of soil-structure interaction. J. Teknol. 76, 59–63 (2015). https://doi.org/10.11113/jt.v76.5625

    Article  Google Scholar 

  26. Knappett, J.A., Brown, M.J., Brennan, A.J., Hamilton, L.: Optimising the compressive behaviour of screw piles in sand for marine renewable energy applications. In: In proceedings-DFI/EFFC 11th international conference on piling and deep foundations. deep foundations institute (2014)

  27. Alwalan, M.F.; El Naggar, M.H.: Finite element analysis of helical piles subjected to axial impact loading. Comput. Geotech. 123, 103597 (2020). https://doi.org/10.1016/j.compgeo.2020.103597

    Article  Google Scholar 

  28. Ho, H.M.; Malik, A.A.; Kuwano, J.; Rashid, H.M.A.: Influence of helix bending deflection on the load transfer mechanism of screw piles in sand: experimental and numerical investigations. Soils Found. 61, 874–885 (2021). https://doi.org/10.1016/j.sandf.2021.04.001

    Article  Google Scholar 

  29. Lees, A.: Geotechnical finite element analysis. ICE Publishing, London (2016)

    Book  Google Scholar 

  30. Spetz, A.: Assessment of finite element softwares for geotechnical calculations, (2012)

  31. Nowkandeh, M.J.; Choobbasti, A.J.: Numerical study of single helical piles and helical pile groups under compressive loading in cohesive and cohesionless soils. Bull. Eng. Geol. Environ. 80, 4001–4023 (2021). https://doi.org/10.1007/s10064-021-02158-w

    Article  Google Scholar 

  32. Hao, D.; Wang, D.; O’loughlin, C.D.; Gaudin, C.: Tensile monotonic capacity of helical anchors in sand: interaction between helices. Can. Geotech. J. 56, 1534–1543 (2019). https://doi.org/10.1139/cgj-2018-0202

    Article  Google Scholar 

  33. Cerfontaine, B.; Knappett, J.A.; Brown, M.J.; Davidson, C.S.; Al-Baghdadi, T.; Sharif, Y.U.; Brennan, A.; Augarde, C.; Coombs, W.M.; Wang, L.; Blake, A.; Richards, D.J.; Ball, J.: A finite element approach for determining the full load–displacement relationship of axially loaded shallow screw anchors, incorporating installation effects. Can. Geotech. J. 58, 565–582 (2021). https://doi.org/10.1139/cgj-2019-0548

    Article  Google Scholar 

  34. Poulos, H.G.: Pile behaviour - theory and application. Geotechnique 39, 365–415 (1989). https://doi.org/10.1680/geot.1989.39.3.365

    Article  Google Scholar 

  35. Whitaker, T.: Experiments with model piles in groups. Geotechnique 7, 147–167 (1957). https://doi.org/10.1680/geot.1957.7.4.147

    Article  Google Scholar 

  36. Hanna, A.M.; Morcous, G.; Helmy, M.: Efficiency of pile groups installed in cohesionless soil using artificial neural networks. Can. Geotech. J. 41, 1241–1249 (2004). https://doi.org/10.1139/T04-050

    Article  Google Scholar 

  37. Poulos, H.G.; Davis, E.H.: Pile foundation analysis and design. Wiley, New York (1980)

    Google Scholar 

  38. Xu, Y.; Zhang, L.M.: Settlement ratio of pile groups in sandy soils from field load tests. J. Geotech. Geoenviron. Eng. 133, 1048–1054 (2007). https://doi.org/10.1061/(asce)1090-0241(2007)133:8(1048)

    Article  Google Scholar 

  39. Leung, Y.F.; Soga, K.; Lehane, B.M.; Klar, A.: Role of linear elasticity in pile group analysis and load test interpretation. J. Geotech. Geoenvironmental Eng. 136, 1686–1694 (2010). https://doi.org/10.1061/(asce)gt.1943-5606.0000392

    Article  Google Scholar 

  40. Bagheri, M.; Jamkhaneh, M.E.; Samali, B.: Effect of seismic soil–pile–structure interaction on mid- and high-rise steel buildings resting on a group of pile foundations. Int. J. Geomech. 18, 04018103 (2018). https://doi.org/10.1061/(asce)gm.1943-5622.0001222

    Article  Google Scholar 

  41. Lanyi, S.A.: Behaviour of helical pile groups and individual piles under compressive, (2017)

  42. Perko, H.A.: Helical piles: a practical guide to design and installation. Wiley, New Jersey (2009)

    Book  Google Scholar 

  43. Elsherbiny, Z.H.: Axial and lateral performance of helical pile groups, (2011)

  44. Meyerhof, G.G.: Bearing capacity and settlement of pile foundations. J. Geotech. Eng. Div. 102, 197–228 (1976). https://doi.org/10.1061/AJGEB6.0000243

    Article  Google Scholar 

  45. Mittal, S.; Mukherjee, S.: Behaviour of group of helical screw anchors under compressive loads. Geotech. Geol. Eng. 33, 575–592 (2015). https://doi.org/10.1007/s10706-015-9841-4

    Article  Google Scholar 

  46. Elsherbiny, Z.H., El Naggar, M.H.: The performance of helical pile groups under compressive loads: a numerical investigation. In: 18th International Conference Soil Mechanics and Geotechnical Engineering, Challenges Innov. Geotech. ICSMGE 2013. 4, 2723–2726 (2013)

  47. Lanyi-Bennett, S.A.; Deng, L.: Axial load testing of helical pile groups in glaciolacustrine clay. Can. Geotech. J. 56, 187–197 (2019). https://doi.org/10.1139/cgj-2017-0425

    Article  Google Scholar 

  48. Bak, J.; Choi, B.; Lee, J.; Bae, J.; Lee, K.; Kim, D.: Behaviour of single and group helical piles in sands from model experiments. MATEC Web Conf. 278, 03007 (2019). https://doi.org/10.1051/matecconf/201927803007

    Article  Google Scholar 

  49. MIDASoft, I.: Geo-technical analysis system new experience (GTS-NX). New York (2020)

  50. Tappenden, K.M., Abazari, E., Sego, D.C.: Load transfer behavior of full - scale instrumented helical piles. In: 71st Can. Geotech. Conf. 13th Jt. CGS/IAH-CNC Groundw. Conf. (geoedmont. 2018). (2018)

  51. Tappenden, K.M.: Predicting the Axial Capacity of Screw Piles Installed in Western Canadian Soils, https://era.library.ualberta.ca/files/bv73c235m/4008200.pdf, (2007)

  52. Bäker, M.: How to get meaningful and correct results from your finite element model. arXiv Prepr. 1–26 (2018)

  53. Obrzud, R.F., Truty, A.: The hardening soil model - a practical guidebook. Lausanne (2018)

  54. Alemdağ, S.; Cinoğlu, A.; Gacener, E.: The importance of amount of settlement in determining the bearing capacity of soils. Bull. Miner. Res. Explor. 148, 169–180 (2017). https://doi.org/10.19111/bulletinofmre.298630

    Article  Google Scholar 

  55. Reynolds, C.E.; Steedman, J.C.: Reinforced concrete designer ’ s handbook. CRC Press, London (1999)

    Google Scholar 

  56. ACI: 543R-00: Design, manufacture, and installation of concrete piles, Michigan (2000)

  57. Prakash, S.; Sharma, H.D.: Pile foundations in engineering practice. Wiley, New York (1990)

    Google Scholar 

  58. Hirany, A., Kulhawy, F.H.: Conduct and interpretation of load tests on drilled shaft foundations, (1988)

  59. Malik, A.A.; Kuwano, J.; Tachibana, S.; Maejima, T.: End bearing capacity comparison of screw pile with straight pipe pile under similar ground conditions. Acta Geotech. 12, 415–428 (2017). https://doi.org/10.1007/s11440-016-0482-4

    Article  Google Scholar 

  60. Fleming, K.; Weltman, A.; Randolph, M.; Elson, K.: Piling engineering. Wiley, New York (1992)

    Google Scholar 

  61. Poulos, H.G.: Analysis and design of pile foundations. Springer, Hong Kong (2000)

    Google Scholar 

  62. Kaniraj, S.R.: A semi-empirical equation for settlement ratio of pile foundations in sand. Soils Found. 33, 82–90 (1993). https://doi.org/10.3208/sandf1972.33.2_82

    Article  Google Scholar 

  63. Rose, A.V.: Behavior and efficiency of perimeter pile groups, http://openaccess.city.ac.uk/1189/, (2012)

Download references

Acknowledgements

The authors would like to acknowledge the Researchers Supporting Project number (RSP-2021/285), King Saud University, Riyadh, Saudi Arabia.

Funding

King Saud University, RSP-2021/285, Ahmed M. Alnuaim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Alnuaim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwalan, M., Alnuaim, A. Axial Loading Effect on the Behavior of Large Helical Pile Groups in Sandy Soil. Arab J Sci Eng 47, 5017–5031 (2022). https://doi.org/10.1007/s13369-021-06422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06422-9

Keywords

Navigation