Skip to main content

Advertisement

Log in

Dehydrogenation and Hydrogenation Cycle of Methylcyclohexane–Toluene System for Liquid Phase Hydrogen Storage: Thermodynamic Reaction Equilibrium Investigation

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Despite H2 being a clean and high-energy carrier, it poses storage and transportation problems, due to high liquefaction pressure, low volumetric density, as well as low boiling point. Consequently, research efforts are focused on the search for sustainable alternative H2 storage technology. In this study, the thermodynamic analyses of liquid organic hydrogen carriers (LOHCs), which utilize the reversible methylcyclohexane–toluene system (MTS) for H2 storage, are investigated. The study employs the Gibbs free energy minimization procedure by treating the non-ideal behavior of the participating species using the Soave–Redlich–Kwong https://www.e-education.psu.edu/png520/m10_p5.html (SRK) equation of states. The “fmincon” optimization algorithm in MATLAB (R2016 version) was employed to find the Gibbs free energy minima. The study reveals close to 100% equilibrium conversion of methylcyclohexane (MCH), with about 99% yield of H2at325oC and 1 bar. In the literature report, PtSn/Mg–Al and Pt/Ce1.4-Mg–Al catalysts showed operability close to the equilibrium conversion. On the other hand, toluene hydrogenation is favored by low temperature and high pressure. The thermodynamic calculation reveals close to 100% equilibrium conversion at 100 °C and 1 bar, which is not achievable by existing catalytic systems due to kinetic limitations. Much improvement is desirable in catalyst design for this process operating at atmospheric pressure, suggested by this thermodynamic study and clearly, a high-pressure–low-temperature system is desirable for the hydrogenation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ojelade, O.A.; Zaman, S.F.: A review on Pd based catalysts for CO2 hydrogenation to methanol: in-depth activity and DRIFTS mechanistic study. Catal. Surv. from Asia. 24, 11–37 (2020). https://doi.org/10.1007/s10563-019-09287-z

    Article  Google Scholar 

  2. Ojelade, O.A.; Zaman, S.F.: A review on CO2 hydrogenation to lower olefins: understanding the structure-property relationships in heterogeneous catalytic systems. J. CO2 Util. 47, 101506 (2021)

    Article  Google Scholar 

  3. Ojelade, O.A.; Zaman, S.F.; Daous, M.A.; Al-Zahrani, A.A.; Malik, A.S.; Driss, H.; Shterk, G.; Gascon, J.: Optimizing Pd: Zn molar ratio in PdZn/CeO2 for CO2 hydrogenation to methanol. Appl. Catal. A Gen. (2019). https://doi.org/10.1016/j.apcata.2019.117185

    Article  Google Scholar 

  4. Fuell Cell’s Technology Office (FCTO), Materials-based hydrogen storage, (2021). https://www.energy.gov/eere/fuelcells/materials-based-hydrogen-storage.

  5. Jolaoso, L.; Zaman, S.F.: Catalytic ammonia decomposition for hydrogen production: utilization of ammonia in a fuel cell. In: Inamuddin; Boddula, R.; Asir, A.M. (Eds.) Sustainable Ammonia Production, pp. 81–105. Springer, Cham (2020)

    Chapter  Google Scholar 

  6. Hodoshima, S.; Arai, H.; Takaiwa, S.; Saito, Y.: Catalytic decalindehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle. Int. J. Hydrog. Energy 28, 1255–1262 (2003)

    Article  Google Scholar 

  7. Okada, Y.; Sasaki, E.; Watanabe, E.; Hyodo, S.; Nishijima, H.: Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method. Int. J. Hydrog. Energy 31, 1348–1356 (2006)

    Article  Google Scholar 

  8. Mizsey, P.; Cuellar, A.; Newson, E.; Hottinger, P.; Truong, T.B.; von Roth, F.: Fixed bed reactor modelling and experimental data for catalytic dehydrogenation in seasonal energy storage applications. Comput. Chem. Eng. 23, S379–S382 (1999)

    Article  Google Scholar 

  9. Nagatake, S.; Higo, T.; Ogo, S.; Sugiura, Y.; Watanabe, R.; Fukuhara, C.; Sekine, Y.: Dehydrogenation of methylcyclohexane over Pt/TiO2 catalyst. Catal. Lett. 146, 54–60 (2016)

    Article  Google Scholar 

  10. Hamayun, M.H.; Maafa, I.M.; Hussain, M.; Aslam, R.: Simulation study to investigate the effects of operational conditions on methylcyclohexane dehydrogenation for hydrogen production. Energies 13, 206 (2020)

    Article  Google Scholar 

  11. Alhumaidan, F.; Cresswell, D.; Garforth, A.: Hydrogen storage in liquid organic hydride: producing hydrogen catalytically from methylcyclohexane. Energy Fuels 25, 4217–4234 (2011)

    Article  Google Scholar 

  12. Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M.: Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrog. Energy 32, 1121–1140 (2007)

    Article  Google Scholar 

  13. Khan, J.; Jain, I.P.: Catalytic effect of Nb2O5 on dehydrogenation kinetics of NaAlH4. Int. J. Hydrog. Energy 41, 8264–8270 (2016)

    Article  Google Scholar 

  14. Khan, J.; Jain, I.P.: Kinetics study of sodium alanate with catalyst TiO2. Renew. Sustain. Energy Rev. 52, 504–507 (2015)

    Article  Google Scholar 

  15. Usman, M.R.: Methylcyclohexane dehydrogenation over commercial 0.3 Wt% Pt/Al2O3catalyst. Proc. Pakistan Acad. Sci. 48, 13–17 (2011)

    Google Scholar 

  16. Coughlin, R.W.; Kawakami, K.; Hasan, A.: Activity, yield patterns, and coking behavior of Pt and PtRe catalysts during dehydrogenation of methylcyclohexane: I. In the absence of sulfur. J. Catal. 88, 150–162 (1984)

    Article  Google Scholar 

  17. Ali, J.K.; Baiker, A.: Critical examination of equilibrium constants proposed for the methylcyclohexane dehydrogenation to toluene. Chem. Eng. Commun. 206, 125–134 (2019)

    Article  Google Scholar 

  18. Ojelade, O.A.; Zaman, S.F.: Ammonia decomposition for hydrogen production: a thermodynamic study. Chem. Pap. 75, 57–65 (2021)

    Article  Google Scholar 

  19. Stangeland, K.; Li, H.; Yu, Z.: Thermodynamic analysis of chemical and phase equilibria in CO2 hydrogenation to methanol, dimethyl ether, and higher alcohols. Ind. Eng. Chem. Res. 57, 4081–4094 (2018)

    Article  Google Scholar 

  20. Walas, S.M.: Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, Oxford (1984)

    Google Scholar 

  21. Lwin, Y.: Chemical equilibrium by Gibbs energy minimization on spreadsheets. Int. J. Eng. Educ. 16, 335–339 (2000)

    Google Scholar 

  22. Lide, D.R.: CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2006)

    Google Scholar 

  23. Dean, J.A.: Langes Handbook of Chemistry, 15th edn. McGraw-Hill, San Francisco (1999)

    Google Scholar 

  24. NIST Chemistry WebBook, Methylcyclohexane Gas Constant Pressure and Heat Capacity, (1997)

  25. Pitzer, K.: Molecular structure and statistical thermodynamics, p. 85. World Scientific Publishing, Singapore (1993)

    Book  Google Scholar 

  26. Yaws, C.L.: The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals: Physical Properties for More than 54,000 Organic and Inorganic Chemical Compounds, Coverage for C1 to C100 Organics and Ac to Zr Inorganics. Gulf Professional Publishing, Texas (2015)

    Google Scholar 

  27. Smith, R.: Chemical Process Design and Integration. John Wiley and Sons Ltd., England (2005)

    Google Scholar 

  28. Goodwin, R.D.: Toluene thermophysical properties from 178 to 800 K at pressures to 1000 bar. J. Phys. Chem. Ref. Data. 18, 1565–1636 (1989)

    Article  Google Scholar 

  29. Murdeshwar P.; Ghoshal A.K.: Investigations on fugacities of CO2 in various conditions of pressure and temperature. Tech. Rep. 1–13 (2017). https://doi.org/10.13140/RG.2.2.25544.01285

  30. Takise, K.; Sato, A.; Murakami, K.; Ogo, S.; Seo, J.G.; Imagawa, K.; Kado, S.; Sekine, Y.: Irreversible catalytic methylcyclohexane dehydrogenation by surface protonics at low temperature. RSC Adv. 9, 5918–5924 (2019)

    Article  Google Scholar 

  31. Yolcular, S.; Olgun, Ö.: Ni/Al2O3 catalysts and their activity in dehydrogenation of methylcyclohexane for hydrogen production. Catal. Today. 138, 198–202 (2008)

    Article  Google Scholar 

  32. Oda, K.; Akamatsu, K.; Sugawara, T.; Kikuchi, R.; Segawa, A.; Nakao, S.: Dehydrogenation of methylcyclohexane to produce high-purity hydrogen using membrane reactors with amorphous silica membranes. Ind. Eng. Chem. Res. 49, 11287–11293 (2010)

    Article  Google Scholar 

  33. Yan, J.; Wang, W.; Miao, L.; Wu, K.; Chen, G.; Huang, Y.; Yang, Y.: Dehydrogenation of methylcyclohexane over PtSn supported on MgAl mixed metal oxides derived from layered double hydroxides. Int. J. Hydrog. Energy 43, 9343–9352 (2018)

    Article  Google Scholar 

  34. Wang, W.; Miao, L.; Wu, K.; Chen, G.; Huang, Y.; Yang, Y.: Hydrogen evolution in the dehydrogenation of methylcyclohexane over Pt/CeMgAlO catalysts derived from their layered double hydroxides. Int. J. Hydrog. Energy 44, 2918–2925 (2019)

    Article  Google Scholar 

  35. Miao, L.; Yan, J.; Wang, W.; Huang, Y.; Li, W.; Yang, Y.: Dehydrogenation of methylcyclohexane over Pt supported on Mg–Al mixed oxides catalyst: the effect of promoter Ir. Chin. J. Chem. Eng. 28, 2337–2342 (2020)

    Article  Google Scholar 

  36. Atsumi, R.; Kobayashi, K.; Xieli, C.; Nanba, T.; Matsumoto, H.; Matsuda, K.; Tsujimura, T.: Effects of steam on toluene hydrogenation over a Ni catalyst. Appl. Catal. A Gen. 590, 117374 (2020)

    Article  Google Scholar 

  37. Usman, M.R.; Alotaibi, F.M.; Aslam, R.: Dehydrogenation-hydrogenation of methylcyclohexane-toluene system on 1.0 wt% Pt/zeolite beta catalyst. Prog. React. Kinet. Mech. 40, 353–366 (2015)

    Article  Google Scholar 

  38. Szegedi, Á.; Popova, M.; Mavrodinova, V.; Urbán, M.; Kiricsi, I.; Minchev, C.: Synthesis and characterization of Ni-MCM-41 materials with spherical morphology and their catalytic activity in toluene hydrogenation. Microporous Mesoporous Mater. 99, 149–158 (2007)

    Article  Google Scholar 

  39. Choi, J.; Zhang, S.; Hill, J.M.: Reducibility and toluene hydrogenation activity of nickel catalysts supported on γ-Al2O3 and κ-Al2O3. Catal. Sci. Technol. 2, 179–186 (2012)

    Article  Google Scholar 

  40. Frauwallner, M.-L.; López-Linares, F.; Lara-Romero, J.; Scott, C.E.; Ali, V.; Hernández, E.; Pereira-Almao, P.: Toluene hydrogenation at low temperature using a molybdenum carbide catalyst. Appl. Catal. A Gen. 394, 62–70 (2011)

    Article  Google Scholar 

  41. Inami, Y.; Ogihara, H.; Nagamatsu, S.; Asakura, K.; Yamanaka, I.: Synergy of Ru and Ir in the electrohydrogenation of toluene to methylcyclohexane on a ketjenblack-supported Ru-Ir alloy cathode. ACS Catal. 9, 2448–2457 (2019)

    Article  Google Scholar 

  42. Mitsushima, S.; Takakuwa, Y.; Nagasawa, K.; Sawaguchi, Y.; Kohno, Y.; Matsuzawa, K.; Awaludin, Z.; Kato, A.; Nishiki, Y.: Membrane electrolysis of toluene hydrogenation with water decomposition for energy carrier synthesis. Electrocatalysis 7, 127–131 (2016)

    Article  Google Scholar 

  43. Matsuoka, K.; Miyoshi, K.; Sato, Y.: Electrochemical reduction of toluene to methylcyclohexane for use as an energy carrier. J. Power Sour. 343, 156–160 (2017)

    Article  Google Scholar 

  44. Higuchi, E.; Ueda, Y.; Chiku, M.; Inoue, H.: Electrochemical hydrogenation reaction of toluene with Pt x Ru alloy catalyst-loaded gas diffusion electrodes. Electrocatalysis 9, 226–235 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from the Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharif F. Zaman.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojelade, O.A., Zaman, S.F. Dehydrogenation and Hydrogenation Cycle of Methylcyclohexane–Toluene System for Liquid Phase Hydrogen Storage: Thermodynamic Reaction Equilibrium Investigation. Arab J Sci Eng 47, 6223–6232 (2022). https://doi.org/10.1007/s13369-021-06162-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06162-w

Keywords

Navigation