Skip to main content
Log in

Numerical Simulation of Ventilation Performance for Large-scale Underground Cavern Group Considering Effect of Ventilation Shaft Structure

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Construction ventilation runs through the entire construction process of large underground caverns and is the key to ensuring construction progress and project safety. For the specific underground cavern group of pumped-storage power plants, a three-dimensional model is constructed, and the CFD method based on fluid mechanics theory is used to simulate the ventilation flow field of the underground cavern group. Through the comparison of the airflow in the main caverns and the air velocity distribution law, Quantitative analysis of the influence of the diameter of the ventilation shaft and the inclination of the shaft on the ventilation flow field shows that when the diameter of the ventilation shaft is 8 m and the inclination of the shaft is 80°, the ventilation effect in the underground cavern group is the best. Applying this scheme to engineering practice and conducting on-site tests, the average relative error of the measuring points is 11.32% by comparing the measured data and the simulation results, which verifies the correctness of the CFD method used. It provides reference value for studying the construction ventilation of underground caverns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li, Y.L.; Yin, Q.; Mo, Z.Y.; Tang, C.Z.; Chen, X.; Yang, X.G.: Optimization of construction ventilation scheme for large-scale underground cavern group of Xiangjiaba hydropower station based on numerical simulation. J. Sichuan Univ. (Eng. Sci. Edition). 42(04), 1–6 (2010)

    Google Scholar 

  2. Li, M.; Aminossadati, S.M.; Wu, C.: Numerical simulation of air ventilation in super-large underground developments. Tunn. Undergr. Space Technol. 52, 38–43 (2016)

    Article  Google Scholar 

  3. Tong, Y.; Shi, M.H.; Gong, Y.F.; He, J.P.: Full-scale experimental study on smoke flow in natural ventilation road tunnel fires with shafts. Tunn. Undergr. Space Technol. 24(6), 627–633 (2009)

    Article  Google Scholar 

  4. Zhong, M.; Shi, C.; He, L.; Shi, J.; Fu, T.: Full-scale experimental research on fire fume refluence of sloped long and large curved tunnel. SCIENCE CHINA Technol. Sci. 54(S1), 89–94 (2011)

    Article  Google Scholar 

  5. Zhong, M.; Shi, C.; He, L.; Shi, J.; Liu, C.; Tian, X.: Smoke development in full-scale sloped long and large curved tunnel fires under natural ventilation. Appl. Therm. Eng. 108, 857–865 (2016)

    Article  Google Scholar 

  6. Sun, J.; Fang, Z.; Chen, J.: Full-scale experiment of longitudinal ventilation smoke control system and central smoke exhaust system in city underwater tunnel. Procedia Engineering. 52, 330–335 (2013)

    Article  Google Scholar 

  7. Pflitsch, A.; Bruene, M.; Steiling, B.; Killing-Heinze, M.; Agnew, B.; Irving, M.; Lockhart, J.: Air flow measurements in the underground section of a UK light rail system. Appl. Therm. Eng. 32, 22–30 (2012)

    Article  Google Scholar 

  8. Musto, M.; Rotondo, G.: Numerical comparison of performance between traditional and alternative jet fans in tiled tunnel in emergency ventilation. Tunn. Undergr. Space Technol. 42, 52–58 (2014)

    Article  Google Scholar 

  9. Nan, C.; Ma, J.; Luo, Z.; Zheng, S.; Wang, Z.: Numerical study on the mean velocity distribution law of air backflow and the effective interaction length of airflow in forced ventilated tunnels. Tunn. Undergr. Space Technol. 46, 104–110 (2015)

    Article  Google Scholar 

  10. Lee, S.C.; Lee, S.; Lee, J.: CFD analysis on ventilation characteristics of jet fan with different pitch angle. KSCE J. Civ. Eng. 18(3), 812–818 (2014)

    Article  Google Scholar 

  11. Diego, I.; Torno, S.; Toraño, J.; Menéndez, M.; Gent, M.: A practical use of CFD for ventilation of underground works. Tunn. Undergr. Space Technol. 26(1), 189–200 (2011)

    Article  Google Scholar 

  12. Wang, X.; Zhang, Z.; Zhou, Z.; Chen, H.: Numerical simulation of TBM construction ventilation in a long diversion tunnel. Tunn. Undergr. Space Technol. 26(4), 560–572 (2011)

    Article  Google Scholar 

  13. Sa, Z.; Li, F.; Qin, B.; Pan, X.: Numerical simulation study of dust concentration distribution regularity in cavern stope. Saf. Sci. 50(4), 857–860 (2012)

    Article  Google Scholar 

  14. Zhang, H.; Sun, J.; Lin, F.; Chen, S.; Yang, J.: Optimization scheme for construction ventilation in large-scale underground oil storage caverns. Appl. Sci. 8(10), 1652 (2018)

    Google Scholar 

  15. Lin, F.: Construction network ventilation system for underground lpg storage cavern. Civil Eng. J. 4(7), 1521–1541 (2018)

    Article  Google Scholar 

  16. Hua, T.B.; Wang, Y.S.; Yao, Q.; Yang, X.G.; Li, H.T.: Numerical simulation and detection feedback of ventilation in the surge-chamber of a hydropower station. Adv. Eng. Sci. 49(03), 29–36 (2017)

    Google Scholar 

  17. Zhang, H.; Lin, F.; Zhang, K.; Yang, J.S.; Chen, S.G.: Establishment of a ventilation network and the shaft ventilation effect in a large underground cavern group. Modern Tunn. Technol. 55(01), 203–209 (2018)

    Google Scholar 

  18. Liu, Y.; Wang, S.; Deng, Y.; Ma, W.; Ma, Y.: Numerical simulation and experimental study on ventilation system for powerhouses of deep underground hydropower stations. Appl. Therm. Eng. 105, 151–158 (2016)

    Article  Google Scholar 

  19. Liu, Z.; Wang, X.L.; Zhang, A.L.: Construction ventilation scheme optimization of underground main powerhouse based on CFD. Appl. Mech. Mater. 368–370, 619–623 (2013)

    Article  Google Scholar 

  20. Lateb, M.; Masson, C.; Stathopoulos, T.; Bédard, C.: Comparison of various types of k–ε models for pollutant emissions around a two-building configuration. J. Wind Eng. Ind. Aerodyn. 115, 9–21 (2013)

    Article  Google Scholar 

  21. Nan, C.Z.; Zhang, W.H.; Zhao, X.; Zhou, Y.L.; Ma, J.M.: Numerical simulations of ventilation to remove noxious gases during excavation of complicated tunnels. J. Tsinghua Univ. (Sci. Technol.). 54(08), 993–998 (2014)

    Google Scholar 

  22. Qiao, L.: Optimization of structural setting based on forced ventilation method in tunnel under construction. J. Southwest Jiaotong Univ. 53(06), 1245–1252 (2018)

    Google Scholar 

  23. Zhang, H.; Lin, F.; Sun, J.C.; Zhou, Z.L.; Zhang, H.; Lin, F.: CFD analysis of ventilation effect of tunnel construction based on typical wall rough model. China Railway Sci. 37(5), 58–65 (2016)

    Google Scholar 

  24. Shao, S.; Yang, X.G.; Zhou, J.W.: Numerical analysis of different ventilation schemes during the construction process of inclined tunnel groups at the Changheba Hydropower Station, China. Tunn. Underground Space Technol. incorporating Trenc. Technol. Res. 59, 157–169 (2016)

    Article  Google Scholar 

  25. Li, A.; Ren, T.; Yang, C.; Xiong, J.; Tao, P.: Numerical simulation, PIV measurements and analysis of air movement influenced by nozzle jets and heat sources in underground generator hall. Build. Environ. 131, 16–31 (2017)

    Article  Google Scholar 

  26. Tao, P.; Li, A.; Zhang, J.; Wang, J.: Scaling model study of the air distribution in a powerhouse under different ventilation conditions. Build. Simul. 7(4), 389–400 (2014)

    Article  Google Scholar 

  27. Li, A.; Tao, P.; Bao, X.; Zhao, Y.: PIV measurements of air distribution in a reduced-scale model - ventilation of a busbar corridor in a hydropower station. Int. J. Vent. 12(1), 81–98 (2013)

    Google Scholar 

  28. Shao, S.; Yang, X.; Zhou, J.: Numerical analysis of different ventilation schemes during the construction process of inclined tunnel groups at the Changheba Hydropower Station. China. Tunnelling and Underground Space Technology. 59, 157–169 (2016)

    Article  Google Scholar 

  29. Wu, Y.; Shi, X.C.; Han, H.; Gao, X.Q.: Numerical simulation for contaminant dispersion induced by human-walking at the gateway of civil protection engineering. J. Saf. Environ. 14(02), 208–213 (2014)

    Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (No. 51905550), the Science and Technology Major Project of Changsha, China (No. kq1703022) and the independent exploration and innovation project of Central South University (No. 2020zzts100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemeng Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Xiao, X., Zhang, Y. et al. Numerical Simulation of Ventilation Performance for Large-scale Underground Cavern Group Considering Effect of Ventilation Shaft Structure. Arab J Sci Eng 47, 4093–4104 (2022). https://doi.org/10.1007/s13369-021-05914-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05914-y

Keywords

Navigation