Skip to main content
Log in

Resource Provisioning Through Machine Learning in Cloud Services

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Efficient resource provisioning is one of the important research challenges in cloud computing. Cloud providers use auto-scaling techniques for resource provisioning to manage the fluctuating workload as well as SLA violations. Auto-scaling is necessary for optimal and efficient resource allocation to manage the workload that will reduce power consumption and will also guarantee for better quality of service (QoS). It is essential for those services which support rigorous quality of service (QoS) requirements such as minimum response time or maximum throughput. Cloud providers implement service elasticity through auto-scaling mechanisms. This paper uses a novel prediction technique for resource provisioning through the auto-scaling mechanism. The prediction is done using time series data analytics with the help of the deep learning technique (i.e., LSTM). The predictive resource provisioning technique will predict the traffic load over the server and then estimates the required number of computing resources. The estimated computing resources are provisioned through the queuing theory so that it optimizes the response time and satisfies the SLA contract between the end-user and provider. The optimal resource provisioning will also reduce the consumption of computing resources while attenuating resource over-provisioning minimizes energy consumption and reduces the infrastructure’s operating costs. The experimental results show that the workload prediction through LSTM obtains better accuracy than other traditional models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ellman, J.; Lee, N.; Jin, N.: Cloud computing deployment: a cost-modelling case-study. Wireless Networks 1–8 (2018)

  2. K. Li: Quantitative modeling and analytical calculation of elasticity in cloud computing, IEEE Transactions on Cloud Computing

  3. Al-Dhuraibi, Y.; Paraiso, F.; Djarallah, N.; Merle, P.: Elasticity in cloud computing: state of the art and research challenges. IEEE Trans. Serv. Comput. 11(2), 430–447 (2017)

    Article  Google Scholar 

  4. Coutinho, E.F.; de Carvalho Sousa, F.R.; Rego, P.A.L.; Gomes, D.G.; de Souza, J.N.: Elasticity in cloud computing: a survey. Annals Telecommun-Annales des Télécommun 70(7–8), 289–309 (2015)

    Article  Google Scholar 

  5. Singh, P.; Gupta, P.; Jyoti, K.; Nayyar, A.: Research on auto-scaling of web applications in cloud: survey, trends and future directions. Scalable Comput: Practice Experience 20(2), 399–432 (2019)

    Google Scholar 

  6. Moreno-Vozmediano, R.; Montero, R.S.; Huedo, E.; Llorente, I.M.: Efficient resource provisioning for elastic cloud services based on machine learning techniques. J Cloud Comput 8(1), 5 (2019)

    Article  Google Scholar 

  7. Nawrocki, P.; Grzywacz, M.; Sniezynski, B.: Adaptive resource planning for cloud-based services using machine learning. J Parallel Distributed Comput 152, 88–97 (2021)

    Article  Google Scholar 

  8. Osypanka, P.; Nawrocki, P.: Resource usage cost optimization in cloud computing using machine learning, IEEE Transactions on Cloud Computing

  9. Sniezynski, B.; Nawrocki, P.; Wilk, M.; Jarzab, M.; Zielinski, K.: Vm reservation plan adaptation using machine learning in cloud computing. J Grid Comput 17(4), 797–812 (2019)

    Article  Google Scholar 

  10. Kumar, J.; Singh, A.K.: Workload prediction in cloud using artificial neural network and adaptive differential evolution. Future Gener Comput Syst 81, 41–52 (2018)

    Article  Google Scholar 

  11. Bankole, A. A.; Ajila, S. A.: Predicting cloud resource provisioning using machine learning techniques, in: 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), IEEE, pp. 1–4 (2013)

  12. Ghosh, P.; Song, J.; Aksan, E.; Hilliges, O.: Learning human motion models for long-term predictions, in: 2017 International Conference on 3D Vision (3DV), IEEE, pp. 458–466 (2017)

  13. Nelson, D.M., Pereira, A.C., de Oliveira, R.A., Stock market’s price movement prediction with lstm neural networks. International joint conference on neural networks (IJCNN). IEEE 2017, 1419–1426 (2017)

  14. Vilaplana Mayoral, J.; Solsona Tehàs, F.; Teixidó Torrelles, I.; Mateo, J.; Abella i Pons, F.; Rius, J.: A queuing theory model for cloud computing. Journal of Supercomputing 69(1): 492–507 (2014)

  15. Support the guardian, https://www.theguardian.com/technology/2019/jul/03/instagram-whatsapp-facebook-media-files-outage, Accessed: 2019-07-03.

  16. Jiang, J.; Lu, J.; Zhang, G.; Long, G.; Optimal cloud resource auto-scaling for web applications. In: 13th IEEE/ACM International Symposium on Cluster. Cloud, and Grid Computing, IEEE 2013, 58–65 (2013)

  17. Messias, V.R.; Estrella, J.C.; Ehlers, R.; Santana, M.J.; Santana, R.C.; Reiff-Marganiec, S.: Combining time series prediction models using genetic algorithm to autoscaling web applications hosted in the cloud infrastructure. Neural Comput. Appl. 27(8), 2383–2406 (2016)

    Article  Google Scholar 

  18. Hasan, M.Z., Magana, E., Clemm, A., Tucker, L., Gudreddi, S.L.D., Integrated and autonomic cloud resource scaling. IEEE network operations and management symposium. IEEE 2012, 1327–1334 (2012)

  19. Lim, H. C.; Babu, S.; Chase, J. S.; Parekh, S. S.: Automated control in cloud computing: challenges and opportunities, in: Proceedings of the 1st workshop on Automated control for datacenters and clouds, pp. 13–18 (2009)

  20. Padala, P.; Hou, K.-Y.; Shin, K. G.; Zhu, X.; Uysal, M.; Wang, Z.; Singhal, S.; Merchant, A.: Automated control of multiple virtualized resources, in: Proceedings of the 4th ACM European conference on Computer systems, pp. 13–26 (2009)

  21. Roy, N.; Dubey, A.; Gokhale, A.: Efficient autoscaling in the cloud using predictive models for workload forecasting, in: 2011 IEEE 4th International Conference on Cloud Computing, IEEE, pp. 500–507 (2011)

  22. Dutreilh, X.; Kirgizov, S.; Melekhova, O.; Malenfant, J.; Rivierre, N.; Truck, I.: Using reinforcement learning for autonomic resource allocation in clouds: towards a fully automated workflow, in: ICAS 2011, The Seventh International Conference on Autonomic and Autonomous Systems, pp. 67–74 (2011)

  23. Tesauro, G.; Jong, N. K.; Das, R.; Bennani, M. N.: A hybrid reinforcement learning approach to autonomic resource allocation, in: 2006 IEEE International Conference on Autonomic Computing, IEEE, pp. 65–73 (2006)

  24. Duggan, J.; Howley, E.; Barrett, E.: Applying reinforcement learning towards automating resource allocation and application scalability in the cloud, Concurrency And Computation: Practice And Experience (To Appear)

  25. Carincotte, C.; Derrode, S.; Bourennane, S.: Unsupervised change detection on sar images using fuzzy hidden markov chains. IEEE Trans. Geosci. Remote Sens. 44(2), 432–441 (2006)

    Article  Google Scholar 

  26. Kaur, P.D.; Chana, I.: A resource elasticity framework for qos-aware execution of cloud applications. Future Gener. Comput. Syst. 37, 14–25 (2014)

    Article  Google Scholar 

  27. Nakano, K.; Olariu, S.: Uniform leader election protocols for radio networks. IEEE Trans. Parallel Distrib. Syst. 13(5), 516–526 (2002)

    Article  Google Scholar 

  28. Pai, P.-F.; Lin, C.-S.: A hybrid arima and support vector machines model in stock price forecasting. Omega 33(6), 497–505 (2005)

    Article  Google Scholar 

  29. Yao, X.; Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Netw. 8(3), 694–713 (1997)

    Article  Google Scholar 

  30. Kavousi-Fard, A.; Samet, H.; Marzbani, F.: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst. Appl. 41(13), 6047–6056 (2014)

    Article  Google Scholar 

  31. Han, S.; Qubo, C.; Meng, H.: Parameter selection in svm with rbf kernel function, in: World Automation Congress 2012, IEEE, pp. 1–4 (2012)

  32. Sherstinsky, A.: Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Phys. D 404, 132306 (2020)

    Article  MathSciNet  Google Scholar 

  33. Liu, H.; Mi, X.; Li, Y.: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, lstm network and elm. Energy Convers. Manage. 159, 54–64 (2018)

    Article  Google Scholar 

  34. Mohammadi, M.; Jolai, F.; Rostami, H.: An m/m/c queue model for hub covering location problem. Math. Comput. Modell. 54(11–12), 2623–2638 (2011)

    Article  MathSciNet  Google Scholar 

  35. Tian, N.; Li, Q.-L.; Gao, J.: Conditional stochastic decompositions in the m/m/c queue with server vacations. Stochastic Models 15(2), 367–377 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported/partially supported by [Visvesvaraya Ph. D. scheme for Electronics and IT, Ministry of Electronics and Information Technology, Government of India]. We thank our colleagues from [Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India] who provided insight and expertise that greatly assisted the research, although they may not agree with all of the interpretations/conclusions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Pratap Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M.P., Rohit & Yadav, D.K. Resource Provisioning Through Machine Learning in Cloud Services. Arab J Sci Eng 47, 1483–1505 (2022). https://doi.org/10.1007/s13369-021-05864-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05864-5

Keywords

Navigation