Skip to main content
Log in

Research on Workpiece Image Mosaic Technology of Groove Cutting Robot

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Aiming at the requirement of obtaining the panorama of the worktable in the automatic cutting system of workpiece groove based on machine vision, an image registration algorithm based on SIFT and improved PROSAC is proposed. First, SIFT algorithm is used for feature detection and feature description. Then, the bidirectional matching and cosine similarity method are used for rough matching of feature points. Finally, an improved PROSAC algorithm is proposed, which purifies the matching points and calculates the image transformation matrix. In image fusion, the weighted average method is used to fuse the overlapping parts of the image to obtain a whole image of the cutting platform. Experimental results show that the algorithm in this paper has been improved in terms of matching accuracy and time-consuming compared with several classical algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The code during the current study is available from the corresponding author on reasonable request.

References

  1. Zhang, X.; Jiang, L.; Zeng, Z.: High angular accuracy manufacture method of micro v-grooves based on tool alignment by on-machine measurement. Opt. Express 23(21), 27819–27828 (2015)

    Article  Google Scholar 

  2. Chu, H.H.; Ji, Y.; Wang, X.J.; Wang, Z.Y.: Study on vision-based dimensional position extraction of plane workpiece for groove automatic cutting. In: Robotic Welding, Intelligence and Automation, pp. 283–293 (2015)

  3. Xu, Y.; Yu, H.; Zhong, J., et al.: Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor. J. Mater. Process. Technol. 212(8), 1654–1662 (2012)

    Article  Google Scholar 

  4. Oltean, S.E.: Strategies for monitoring and control with seam tracking in electron beam welding. Procedia Manuf. 22, 605–612 (2018)

    Article  Google Scholar 

  5. Zitová, B.; Flusser, J.; Filip, H.: Image registration: a survey and recent advances. In: International Conference Image Processing, pp. 1–56 (2005)

  6. Staib, L.H.; Lei, X.: Intermodality 3D medical image registration with global search. In: Proceedings of IEEE Workshop on Biomedical Image Analysis, pp. 225–234 (1994)

  7. Toyama, F.; Shoji, K.; Miyamichi, J.: Image mosaicing from a set of images without configuration information. In: Proceedings of the 17th International Conference on Pattern Recognition, Vol. 2, pp. 899–902 (2004)

  8. Reddy, B.S.; Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  9. Harris, C.G.; Stephens, M.J.: A combined corner and edge detector. In: The Fourth Alvey Vision Conference, pp. 147–151 (1988)

  10. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Bay, H.; Tuytelaars, T.; Van Gool, L.: SURF: speeded up robust features. In: European Conference on Computer Vision, vol. 3951, pp. 404–417 (2006)

  13. Rosten, E.; Porter, R.; Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Softw. Eng. 32(1), 105–119 (2010)

    Google Scholar 

  14. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G.R.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)

  15. Ahn, S.; Park, J.; Luo, L.; Chong, J.: Adaptive object-region-based image pre-processing for a noise removal algorithm. KSII Trans. Internet Inf. Syst. 7(12), 3166–3179 (2013)

    Article  Google Scholar 

  16. Huang, B.H.; Guo, F.S.; Jiang, Y.B.; Luo, Y.: Geometric correction to Guangfeng basin remote sensing images in method compare. Water Conserv. Technol. Econ. 16(2), 227–228 (2010)

    Google Scholar 

  17. Zhang, L.; Li, A.: Thresholding-based remote sensing image segmentation using mean absolute deviation algorithm. J. Appl. Remote Sens. 8(1), 083542 (2014)

    Article  Google Scholar 

  18. Aschenbrenner, K.P.; Guthier, C.V.; Lyatskaya, Y.; Boda-Heggemann, J.; Wenz, F.; Hesser, J.W.: Feasibility of using single photon counting x-ray for lung tumor position estimation based on 4d-ct. Z. Med. Phys. 27(3), 243–254 (2017)

    Article  Google Scholar 

  19. Di, J.; Yang, N.; Sun, J.: Template selection and matching algorithm for image matching. J. Image Graph. 22(11), 1512–1520 (2017)

    Google Scholar 

  20. Mostafavi, H.; Sloutsky, A.; Jeung, A.: Detection and localization of radiotherapy targets by template matching. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6023–6027 (2012)

  21. Zhao, T.: Small target detection and recognition based on template matching. In: 2016 4th International Conference on Machinery, Materials and Information Technology Applications, pp. 964–968

  22. Renuka, D.: Imge mosaicking using phase correlation and feature based approach: a review. Int. J. Eng. Res. 4(1), 270–275 (2016)

    Google Scholar 

  23. Neto, V. F. d. C.; Campos, M. F. M.: An improved methodology for image feature matching. In: XXII Brazilian Symposium on Computer Graphics and Image Processing, pp. 307–314 (2009)

  24. Luo, J.; Oubong, G.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Process. 3(4), 143–152 (2009)

    Google Scholar 

  25. Sedaghat, A.; Ebadi, H.: Remote sensing image matching based on adaptive binning sift descriptor. IEEE Trans. Geosci. Remote Sens. 53(10), 5283–5293 (2015)

    Article  Google Scholar 

  26. Bosch, A.; Zisserman, A.; Muoz, X.: Scene classification using a hybrid generative/discriminative approach. IEEE Trans. Pattern Anal. Mach. Intell. 30, 712–727 (2008)

    Article  Google Scholar 

  27. Rana, S.; Hampson, R.; Dobie, G.: Breast cancer: model reconstruction and image registration from segmented deformed image using visual and force based analysis. IEEE Trans. Med. Imaging 99, 1–12 (2019)

    Google Scholar 

  28. Morel, J.M.; Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009)

    Article  MathSciNet  Google Scholar 

  29. Al-Khafaji, S.L.; Zhou, J.; Zia, A.; Liew, W.C.: Spectral–spatial scale invariant feature transform for hyperspectral images. IEEE Trans. Image Process. 27(2), 837–850 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zhao, W.; Tian, Z.; Yang, L.; Yan, W.; Wen, J.: Image registration using a kernel partial least squares based mismatches removal method. AEUE Int. J. Electron. Commun. 70(4), 427–435 (2016)

    Article  Google Scholar 

  31. Fischler, M.A.; Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  32. Chum, O.; Matas, J.: Matching with PROSAC-progressive sample consensus. Comput. Vision Pattern Recognit. 1, 220–226 (2005)

    Google Scholar 

  33. Baráth, D.; Noskova, J.; Matas, J.: MAGSAC: marginalizing sample consensus. In: Conference on Computer Vision and Pattern Recognition, pp. 10197–10205 (2019)

  34. Hossein-Nejad, Z.; Nasri, M.: RKEM: redundant keypoint elimination method in image registration. IET Image Proc. 11(5), 273–284 (2017)

    Article  Google Scholar 

  35. Sun, Y.; Moelker, A.; Niessen, W.J.; van Walsum, T.: Towards robust CT-ultrasound registration using deep learning methods. Underst. Interpret. Mach. Learn. Med. Image Comput. Appl. 11038, 43–51 (2018)

    Google Scholar 

  36. Vos, B.; Berendsen, F.F.; Viergever, M.A.; Staring, M.; Igum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 204–212 (2017)

  37. Giering, M.; Venugopalan, V.; Reddy, K.: Multi-modal sensor registration for vehicle perception via deep neural networks. In: IEEE High Performance Extreme Computing Conference, pp. 1–6 (2015)

  38. Balakrishnan, G.; Zhao, A.; Sabuncu, M.R.; Guttag, J.; Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  39. de Vos, B.D.; Berendsen, F.F.; Viergever, M.A.; Sokooti, H.; Staring, M.; Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  40. Aguilar-ponce, R.T.X.; Kumar, J.; Ashok Bayoumi, M.: Pixel-level image fusion scheme based on linear algebra. In: IEEE International Symposium on Circuits and Systems, pp. 2658–2661 (2007)

  41. Nirmala, D.E.; Vaidehi, V.: Comparison of pixel-level and feature level image fusion methods. In: International Conference on Computing for Sustainable Global Development, pp. 743–748 (2015)

  42. Maurya, R.: Theoretic study of image fusion techniques—a survey. Int. J. Comput. Eng. 2, 43–49 (2014)

    Google Scholar 

  43. Gonultas, F.; Atik, M.E.; Duran, Z.: Extraction of roof planes from different point clouds using RANSAC algorithm. Int. J. Environ. Geoinform. 7(2), 165–171 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by A Project of Shandong Province Higher Educational Science and Technology Program (Grant No J18KA367); Scientific Research Projects at School Level of Qingdao Binhai University (2018KZ01). Meanwhile the author is particularly grateful to Harbin XiRobot Technology Co., Ltd. for its help during the study.

Funding

A Project of Shandong Province Higher Educational Science and Technology Program (Grant No J18KA367); Scientific Research Projects at School Level of Qingdao Binhai University (2018KZ01).

Author information

Authors and Affiliations

Authors

Contributions

Hui-hui Chu developed the software part of the vision system and wrote all the algorithms for image processing, wrote the manuscript. Bin Xue built a hardware system platform. Ning Li contributed significantly to analysis and manuscript preparation.

Corresponding author

Correspondence to Hui-Hui Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, HH., Xue, B. & Li, N. Research on Workpiece Image Mosaic Technology of Groove Cutting Robot. Arab J Sci Eng 46, 9065–9082 (2021). https://doi.org/10.1007/s13369-021-05734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05734-0

Keywords

Navigation