Skip to main content
Log in

UVA/TiO2–ZnO–NiO Photocatalytic Oxidation Process of Dye: Optimization and CFD Simulation

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, the sol–gel method is used to synthesize pure TiO2, TiO2–ZnO and TiO2–ZnO–NiO (TZN) nanoparticles. The study aims at investigating the photocatalytic efficiency of the synthesized nanoparticles used in order to remove methyl orange (MO, as a model water pollutant) dye, as exposed to black light radiation. Moreover, it also addresses the factors that may positively or negatively affect the efficiency of the photocatalytic process. XRD, SEM and DRS analyses were used to determine the nanocatalysts’ properties. The response surface method (RSM) was used to investigate the effect of four operating parameters [including the catalyst loading (TZN), basic dye concentration, pH and H2O2 concentration] and optimize the photocatalytic process of MO dye degradation in 60 min. Maximum dye removal percentage was obtained under the best operating conditions (catalyst loading = 0.3 g/l, dye concentration = 15 mg/l, pH 3 and H2O2 concentration = 15 ml/l). The high correlation coefficient (R2 = 0.9930) showed that there is an acceptable level of consistency between the experimental data and the resulted MO dye degradation predictions using the response surface model. Appropriate modules were used to carry out the two-dimensional steady-state computational fluid dynamic (CFD) simulation of the advanced oxidation process in the photocatalytic reactor. A quasi-first-order kinetic equation derived from the LangmuirHinshelwood model (kapp = 0.015 min−1) was used to account for the photocatalytic process of MO dye degradation. The value of R2 = 0.8865 indicated the significant consistency between the simulated CFD concentration values and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5:
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mais, L.; Vacca, A.; Mascia, M.; Usai, E.M.; Tronci, S.; Palmas, S.: Experimental study on the optimization of azo-dyes removal by photo-electrochemical oxidation with TiO2 nanotubes. Chemosphere 248, 125938 (2020)

    Article  Google Scholar 

  2. Mansouri, M.; Sadeghian, S.; Mansouri, G.; Setareshenas, N.: Enhanced photocatalytic performance of UiO-66-NH2/TiO2 composite for dye degradation. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-020-12098-9

    Article  Google Scholar 

  3. Vaez, Z.; Javanbakht, V.: Synthesis, characterization and photocatalytic activity of ZSM-5/ZnO nanocomposite modified by Ag nanoparticles for methyl orange degradation. J Photochem Photobiol A 388, 112064 (2020)

    Article  Google Scholar 

  4. Mansouri, M.; Mozafari, N.; Bayati, B.; Setareshenas, N.: Photo-catalytic dye degradation of methyl orange using zirconia–zeolite nanoparticles. Bull Mater Sci 42, 230 (2019)

    Article  Google Scholar 

  5. Mohseni-Salehi, M.S.; Taheri-Nassaj, E.; Hosseini-Zori, M.: Effect of dopant (Co, Ni) concentration and hydroxyapatite compositing on photocatalytic activity of titania towards dye degradation. J Photochem Photobiol A 356, 57–70 (2018)

    Article  Google Scholar 

  6. Tseng, H.H.; Wei, M.C.; Hsiung, S.F.; Chiou, C.W.: Degradation of xylene vapor over Ni-doped TiO2 photocatalysts prepared by polyol-mediated synthesis. Chem Eng J 150, 160–167 (2009)

    Article  Google Scholar 

  7. Wang, Y.; Liu, T.; Huang, Q.; Wu, C.: Synthesis and their photocatalytic properties of Ni-doped ZnO hollow microspheres. J Mater Res 31, 2317–2328 (2016)

    Article  Google Scholar 

  8. Chen, X.; Wu, Z.; Liu, D.; Gao, Z.: Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res Lett 12, 143 (2017)

    Article  Google Scholar 

  9. Dai, K.; Chen, H.; Peng, T.; Ke, D.; Yi, H.: Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere 69, 1361–1367 (2007)

    Article  Google Scholar 

  10. Liu, Y.; Wang, Z.; Fan, W.; Geng, Z.; Feng, L.: Enhancement of the photocatalytic performance of Ni-loaded TiO2 photocatalyst under sunlight. Ceram Int 40, 3887–3893 (2014)

    Article  Google Scholar 

  11. Jonidi-Jafari, A.; Shirzad-Siboni, M.; Yang, J.K.; Naimi-Joubani, M.; Farrokhi, M.: Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite. J Taiwan Inst Chem Eng 50, 100–107 (2015)

    Article  Google Scholar 

  12. Guan, B.; Yu, J.; Guo, S.; Yu, S.; Han, S.: Porous nickel doped titanium dioxide nanoparticles with improved visible light photocatalytic activity. Nanoscale Adv 2, 1352–1357 (2020)

    Article  Google Scholar 

  13. Zou, X.; Dong, X.; Wang, L.; Ma, H.; Zhang, X.; Zhang, X.: Preparation of Ni doped ZnO–TiO2 composites and their enhanced photocatalytic activity. Int J Photoenergy 2014, 893158 (2014). https://doi.org/10.1155/2014/893158

    Article  Google Scholar 

  14. Vincent, G.; Schaer, E.; Marquaire, P.M.; Zahraa, O.: CFD modelling of an annular reactor, application to the photocatalytic degradation of acetone. Process Saf Environ Prot 89, 35–40 (2011)

    Article  Google Scholar 

  15. Kumar, J.; Bansal, A.: CFD simulations of immobilized-titanium dioxide based annular photocatalytic reactor: model development and experimental validation. Indian J Chem Technol 22, 95–104 (2015)

    Google Scholar 

  16. Ghafari, S.; Aziz, H.A.; Isa, M.H.; Zinatizadeh, A.A.: Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J Hazard Mater 163, 650–656 (2009)

    Article  Google Scholar 

  17. Boyjoo, Y.; Ang, H.M.; Pareek, V.: CFD simulation of a pilot scale slurry photocatalytic reactor and design of multiple-lamp reactors. Chem Eng Sci 111, 266–277 (2014)

    Article  Google Scholar 

  18. Rafiee, E.; Noori, E.; Zinatizadeh, A.A.; Zangeneh, H.: Surfactant effect on photocatalytic activity of Ag–TiO2/PW nanocomposite in DR16 degradation: characterization of nanocomposite and RSM process optimization. Mater Sci Semicond Process 83, 115–124 (2018)

    Article  Google Scholar 

  19. Mousavi, S.M.; Mahjoub, A.R.; Abazari, R.: Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation. J Mol Liq 242, 512–519 (2017)

    Article  Google Scholar 

  20. Nakhate, G.G.; Nikam, V.S.; Kanade, K.G.; Arbuj, S.; Kale, B.B.; Baeg, J.O.: Hydrothermally derived nanosized Ni-doped TiO2: a visible light driven photocatalyst for methylene blue degradation. Mater Chem Phys 124, 976–981 (2010)

    Article  Google Scholar 

  21. Nodehi, A.; Atashi, H.; Mansouri, M.: Improved photocatalytic degradation of reactive blue 81 using NiO-doped ZnO–ZrO2 nanoparticles. J Disper Sci Technol 40, 766–776 (2019)

    Article  Google Scholar 

  22. Mansouri, M.; Hosseinvand, A.; Kikhavani, T.; Setareshenas, N.: Synthesis and characterization of N-doped ZnO–γAl2O3 nanoparticles for photo-catalytic application. Int J Chem React Eng 18, 20190116 (2020). https://doi.org/10.1515/ijcre-2019-0116

    Article  Google Scholar 

  23. Behnajady, M.A.; Modirshahla, N.; Hamzavi, R.: Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst. J Hazard Mater 133, 226–232 (2006)

    Article  Google Scholar 

  24. Chen, L.C.; Tsai, F.R.; Huang, C.M.: Photocatalytic decolorization of methyl orange in aqueous medium of TiO2 and Ag–TiO2 immobilized on γ-Al2O3. J Photochem Photobiol A 170, 7–14 (2005)

    Article  Google Scholar 

  25. Chou, J.C.; Liao, L.P.: Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method. Thin Solid Films 476, 157–161 (2005)

    Article  Google Scholar 

  26. Ma, L.; Liu, B.; Huang, P.J.J.; Zhang, X.; Liu, J.: DNA adsorption by ZnO nanoparticles near its solubility limit: Implications for DNA fluorescence quenching and DNAzyme activity assays. Langmuir 32, 5672–5680 (2016)

    Article  Google Scholar 

  27. Amani-Ghadim, A.R.; Alizadeh, S.; Khodam, F.; Rezvani, Z.: Synthesis of rod-like α-FeOOH nanoparticles and its photocatalytic activity in degradation of an azo dye: empirical kinetic model development. J Mol Catal A Chem 408, 60–68 (2015)

    Article  Google Scholar 

  28. Gupta, V.K.; Pathania, D.; Sharma, S.; Agarwal, S.; Singh, P.: Remediation and recovery of methyl orange from aqueous solution onto acrylic acid grafted Ficus carica fiber: isotherms, kinetics and thermodynamics. J Mol Liq 177, 325–334 (2013)

    Article  Google Scholar 

  29. Szeto, W.; Li, J.; Huang, H.; Leung, D.Y.C.: VUV/TiO2 photocatalytic oxidation process of methyl orange and simultaneous utilization of the lamp-generated ozone. Chem Eng Sci 177, 380–390 (2018)

    Article  Google Scholar 

  30. Huang, M.; Xu, C.; Wu, Z.; Huang, Y.; Lin, J.; Wu, J.: Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigments 77, 327–334 (2008)

    Article  Google Scholar 

  31. Hung, C.H.; Ching, P.C.; Yuan, C.; Chou, C.Y.: Photocatalytic degradation of azo dye in TiO2 suspended solution. Water Sci Technol 43, 313–320 (2001)

    Article  Google Scholar 

  32. Tseng, D.H.; Juang, L.C.; Huang, H.H.: Effect of oxygen and hydrogen peroxide on the photocatalytic degradation of monochlorobenzene in aqueous suspension. Int J Photoenergy 2012, 328526 (2012)

    Google Scholar 

  33. Zang, Y.; Farnood, R.: Effect of hydrogen peroxide on the photocatalytic degradation of methyl tert-butyl ether. Top Catal 37, 91–96 (2006)

    Article  Google Scholar 

  34. Ghafoori, S.; Mehrvar, M.; Chan, P.K.: Photoassisted Fenton-like degradation of aqueous poly(acrylic acid): from mechanistic kinetic model to CFD modeling. Chem Eng Res Des 91, 2617–2629 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

M. M. thanks the University of Ilam, for the award research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Towan Kikhavani, Hoda Yari, Mohsen Mansouri and Naimeh Setareshenas. The first draft of the manuscript was written by Mohsen Mansouri and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Mohsen Mansouri.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors read and approved the final manuscript. All authors are fully aware of this manuscript and have permission to submit the manuscript for possible publication.

Competing interests

The authors have no conflict of interest with each other.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, M., Yari, H., Kikhavani, T. et al. UVA/TiO2–ZnO–NiO Photocatalytic Oxidation Process of Dye: Optimization and CFD Simulation. Arab J Sci Eng 47, 6059–6072 (2022). https://doi.org/10.1007/s13369-021-05733-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05733-1

Keywords

Navigation