Skip to main content

Advertisement

Log in

A Hybrid Type-2 Fuzzy Performance Evaluation Model for Public Transport Services

  • Research Article-Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study provides a framework through customer satisfaction surveys performed by the Directorate of Istanbul Electricity, Tramway and Tunnel Enterprises (IETT) in 2017 with 3350 participants. The main contribution of this study is to create a type-2 fuzzy set multi-criteria decision making (MCDM) framework consisting of the fuzzy analytic hierarchy process (AHP) and the fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) in order to join the opinions of professionals with those of passengers with the aim of making a precise assessment on passenger satisfaction and focus areas. In general, these types of MCDM methods are used to choose the best option between given scenarios. The difference here is the application of this framework to find the actual performances of the already applied decisions by including them in the survey questions, rather than finding the best among several alternatives. The model determines the performances of pre-determined criteria by cross-checking them with expert opinions and survey data, providing a better investment strategy for local bodies and useful insights for both city planners and public transportation agencies in general. The aim of developing the model is to compare the criteria value, given by the experts, with the passenger evaluations for the same criteria to check for consistency, which shows us the level of agreement between passenger needs and expert opinions. Our results show that most passengers using IETT services are pleased with the punctuality of buses and information provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grise, E.; El-Geneidy, A.: Where is the happy transit rider? Evaluating satisfaction with regional rail service using a spatial segmentation approach. Transp. Res. Part A Policy Pract. 114, 84–96 (2018)

    Article  Google Scholar 

  2. Nalmpantis, D.; Roukouni, A.; Genitsaris, E.; Stamelou, A.; Naniopoulos, A.: Evaluation of innovative ideas for Public Transport proposed by citizens using Multi-Criteria Decision Analysis (MCDA). Eur. Transp. Res. Rev. 11(22), 1–16 (2019)

    Google Scholar 

  3. Mardani, A.; Jusoh, A.; Nor, K.M.; Khalifah, Z.; Zakwan, N.; Valipour, A.: Multiple criteria decision-making techniques and their applications—a review of the literature from 2000 to 2014. Econ. Res.-Ekonomska Istraživanja 28(1), 516–571 (2015)

    Article  Google Scholar 

  4. Macharis, C.; Bernardini, A.: Reviewing the use of Multi-Criteria Decision Analysis for the evaluation of transport projects: time for a multi-actor approach. Transp. Policy 37, 177–186 (2015)

    Article  Google Scholar 

  5. Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Jusoh, A.; Nor, K.M.: Multiple criteria decision-making techniques in transportation systems: a systematic review of the state-of-the-art literature. Transport 31(3), 359–385 (2016)

    Article  Google Scholar 

  6. Radwan, N.; Senousy, M.; Alaa El Din, M.: Neutrosophic AHP multi criteria decision making method applied on the selection of learning management system. Int. J. Adv. Comput. Technol. 8(5), 95–105 (2016)

    Google Scholar 

  7. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ayodele, T.; Ogunjuyigbe, A.; Odigie, O.; Munda, J.: A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: the case study of Nigeria. Appl. Energy 228, 1853–1869 (2018)

    Article  Google Scholar 

  9. Lazim, A.; Liana, N.: A new type-2 fuzzy set of linguistic variables for the fuzzy analytic hierarchy process. Expert Syst. Appl. 41(7), 3297–3305 (2014)

    Article  Google Scholar 

  10. Kahraman, C.; Öztayşi, B.; Sarı, İU.; Turanlıoğlu, E.: Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowl. Based Syst. 59, 48–57 (2014)

    Article  Google Scholar 

  11. Türk, S.; Deveci, M.; Özcan, E.; Canıtez, F.; John, R.: Interval type-2 fuzzy sets improved by Simulated Annealing for locating the electric charging stations. Inf. Sci. 547, 641–666 (2021)

    Article  MathSciNet  Google Scholar 

  12. Deveci, M.; Canıtez, F.; Gökaşar, I.: WASPAS and TOPSIS based interval type-2 fuzzy MCDM method for a selection of a car sharing station. Sustain. Urban Areas 41, 777–791 (2018)

    Google Scholar 

  13. Bilisik, O.N.; Erdogan, M.; Kaya, I.; Baracli, H.: A hybrid fuzzy methodology to evaluate customer satisfaction in a public transportation system for Istanbul. Total Qual. Manag. Bus. Excell. 24, 1141–1159 (2013)

    Article  Google Scholar 

  14. Celik, E.; Bilisik, O.N.; Erdogan, M.; Gumus, A.T.; Baracli, H.: An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul. Transp. Res. E-Log 58, 28–51 (2013)

    Article  Google Scholar 

  15. Kesten, A.S.; Ogut, K.S.: A new passenger-oriented performance measurement framework for public rail transportation systems. Promet-Traffic Transp. 26, 299–311 (2014)

    Article  Google Scholar 

  16. Celik, E.; Aydin, N.; Gumus, A.T.: A multiattribute customer satisfaction evaluation approach for rail transit network: a real case study for Istanbul, Turkey. Transp. Policy 36, 283–293 (2014)

    Article  Google Scholar 

  17. Aydin, N.; Celik, E.; Gumus, A.T.: A hierarchical customer satisfaction framework for evaluating rail transit systems of Istanbul. Transp. Res. Part A Policy Pract. 77, 61–81 (2015)

    Article  Google Scholar 

  18. Isikli, E.; Aydin, N.; Celik, E.; Gumus, A.T.: Identifying key factors of rail transit service quality: an empirical analysis for Istanbul. J. Public Transp. 20, 63–90 (2017)

    Article  Google Scholar 

  19. Yanik, S.; Aktas, E.; Topcu, Y.I.: Traveler satisfaction in rapid rail systems: the case of Istanbul metro. Int. J. Sustain. Transp. 11, 642–658 (2017)

    Article  Google Scholar 

  20. Aydin, N.: A fuzzy-based multi-dimensional and multi-period service quality evaluation outline for rail transit systems. Transp. Policy 55, 87–98 (2017)

    Article  Google Scholar 

  21. Ekinci, Y.; Uray, N.; Ulengin, F.; Duran, C.: A segmentation based analysis for measuring customer satisfaction in maritime transportation. Transport 33, 104–118 (2018)

    Article  Google Scholar 

  22. Ona, J.; Ona, R.; Lopez, G.: Transit service quality analysis using cluster analysis and decision trees: a step forward to personalized marketing in public transportation. Transportation 43, 725–747 (2016)

    Article  Google Scholar 

  23. Guirao, B.; Garcia-Pastor, A.; Eugenia Lopez-Lambas, M.: The importance of service quality attributes in public transportation: narrowing the gap between scientific research and practitioners’ needs. Transp. Policy 49, 68–77 (2016)

    Article  Google Scholar 

  24. Joewono, T.B.; Tarigan, A.K.M.; Susilo, Y.O.: Road-based public transportation in urban areas of Indonesia: what policies do users expect to improve the service quality? Transp. Policy 49, 114–124 (2016)

    Article  Google Scholar 

  25. Shen, W.; Xiao, W.; Wang, X.: Passenger satisfaction evaluation model for Urban rail transit: a structural equation modeling based on partial least squares. Transp. Policy 46, 20–31 (2016)

    Article  Google Scholar 

  26. Kim, S.H.; Chung, J.-H.; Park, S.; Choi, K.: Analysis of user satisfaction to promote public transportation: a pattern-recognition approach focusing on out-of-vehicle time. Int. J. Sustain. Transp. 11, 582–592 (2017)

    Article  Google Scholar 

  27. Colesca, S.E.; Pacesila, M.; Burcea, S.G.; Ciocoiu, C.N.; Bugheanu, A.M.: Analysis of passenger’s satisfaction with the quality of the public transportation mode choices in Bucharest: a fuzzy approach. Econ. Comput. Econ. Cybern. Stud. Res. 51, 109–125 (2017)

    Google Scholar 

  28. Dehghani, A.; Kheirkhah, A.S.; Ahadi, H.R.: A hierarchical TOPSIS method based on type-2 fuzzy sets to evaluate service quality of public transportation. Int. J. Ind. Eng. Theory Appl. Pract. 24, 505–525 (2017)

    Google Scholar 

  29. Nassereddine, M.; Eskandari, H.: An integrated MCDM approach to evaluate public transportation systems in Tehran. Transp. Res. Part A Policy Pract. 106, 427–439 (2017)

    Article  Google Scholar 

  30. Fu, X.; Juan, Z.: Understanding public transit use behavior: integration of the theory of planned behavior and the customer satisfaction theory. Transportation 44, 1021–1042 (2017)

    Article  Google Scholar 

  31. Allen, J.; Carlos Munoz, J.; Dios Ortuzar, J.: Modelling service-specific and global transit satisfaction under travel and user heterogeneity. Transp. Res. Part A Policy Pract. 113, 509–528 (2018)

    Article  Google Scholar 

  32. Sun, S.-C.: Public transit loyalty modeling considering the effect of passengers' emotional value: a case study in Xiamen. China. J. Adv. Transp. 2018, 1–12 (2018)

    Google Scholar 

  33. Bajcetic, S.; Tica, S.; Zivanovic, P.; Milovanovic, B.; Dorojevic, A.: Analysis of public transport users’ satisfaction using quality function deployment: Belgrade case study. Transport 33, 609–618 (2018)

    Article  Google Scholar 

  34. Weng, J.; Di, X.; Wang, C.; Wang, J.; Mao, L.: A bus service evaluation method from passenger’s perspective based on satisfaction surveys: a case study of Beijing, China. Sustainability 10, 2723 (2018)

    Article  Google Scholar 

  35. Lin, Z.; Vlachos, I.: An advanced analytical framework for improving customer satisfaction: a case of air passengers. Transp. Res. E-Log. 114, 185–195 (2018)

    Article  Google Scholar 

  36. Baouni, T.; De Ona, R.; Merad, B.; Tahraoui, L.; Machado-Leon, J.L.; De Ona, J.: Analysıs of the main service quality dimensions affecting satisfaction of the metropolitan rail public transit users in Algiers. Tema-J. Land Use Mobil. Environ. 2018(1), 67–82 (2018)

    Google Scholar 

  37. Wang, Y.; Zhang, Z.; Sun, H.: Assessing customer satisfaction of urban rail transit network in Tianjin based on intuitionistic fuzzy group decision model. Discrete Dyn. Nat. Soc. 2018, 1–11 (2018)

    Google Scholar 

  38. Mavi, R.K.; Zarbakhshnia, N.; Khazraei, A.: Bus rapid transit (BRT): a simulation and multi criteria decision making (MCDM) approach. Transp. Policy 72, 187–197 (2018)

    Article  Google Scholar 

  39. Aquino, J.T.; Coutinho de Melo, F.J.; Jeronimo, T.B.; Medeiros, D.D.: Evaluation of quality in public transport services: the use of quality dimensions as an input for fuzzy TOPSIS. Int. J. Fuzzy Syst. 21, 176–193 (2019)

    Article  Google Scholar 

  40. Rodriguez-Valencia, A.; Rosas-Satizabal, D.; Paris, D.: Importance-performance analysis in public transportation: methodological revision for practical implementation. Transp. Res. Rec. 2673, 710–723 (2019)

    Article  Google Scholar 

  41. Görener, A.; Ayvaz, B.; Kuşakcı, A.O.; Altınok, E.: A hybrid type-2 fuzzy based supplier performance evaluation methodology: the Turkish Airlines technic case. Appl. Soft Comput. 56, 436–445 (2017)

    Article  Google Scholar 

  42. Gorzałczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 21(1), 1–17 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. John, R.; Coupland, S.: Type-2 fuzzy logic: a historical view. IEEE Comput. Intell. Mag. 2(1), 57–62 (2007)

    Article  Google Scholar 

  44. Chen, S.-M.; Lee, L.-W.: Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets. Expert Syst. Appl. 37, 824–833 (2010)

    Article  Google Scholar 

  45. Chen, S.-M.; Yang, M.-W.; Lee, L.-W.; Yang, S.-W.: Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets. Expert Syst. Appl. 39(5), 5295–5308 (2012)

    Article  Google Scholar 

  46. Celik, E.; Gumus, A.T.; Alegoz, M.: A trapezoidal type-2 fuzzy MCDM method to identify and evaluate critical success factors for humanitarian relief logistics management. J. Intell. Fuzzy Syst. 27(6), 2847–2855 (2014)

    Article  Google Scholar 

  47. Abdullah, L.; Najib, L.: A new type-2 fuzzy set of linguistic variables for the fuzzy analytic hierarchy process. Expert Syst. Appl. 41(7), 3297–3305 (2014)

    Article  Google Scholar 

  48. Cevik Onar, S.; Oztaysi, B.; Kahraman, C.: Strategic decision selection using hesitant fuzzy TOPSIS and interval Type-2 fuzzy AHP: a case study. Int. J. Comput. Intell. Syst. 7(5), 1002–1021 (2014)

    Article  Google Scholar 

  49. Öztayşi, B.: A group decision making approach using interval Type-2 Fuzzy AHP for enterprise information systems project selection. J. Multiple-valued Logic Soft Comput. 24(5–6), 475–500 (2015)

    Google Scholar 

  50. Şahin, A.; Yapıcı Pehlivan, N.: Evaluation of lifequality by integrated method of AHP and TOPSIS based on interval type-2 fuzzy sets. Hacet. J. Math. Stat. 46(3), 511–523 (2017)

    MATH  Google Scholar 

  51. Yilmaz, M.K.; Kusakci, A.O.; Tatoglu, E.; Icten, O.; Yetgin, F.: Performance evaluation of real estate investment trusts using a hybridized interval Type-2 fuzzy AHP-DEA approach: the case of Borsa Istanbul. Int. J. Inf. Technol. Decis. Mak. 18(6), 1785–1820 (2019)

    Article  Google Scholar 

  52. Calik, A.: A multi-criteria evaluation for sustainable supplier selection based on fuzzy sets. Bus. Econ. Res. J. 10(1), 95–113 (2019)

    Article  MathSciNet  Google Scholar 

  53. Hwang, C.; Yoon, K.: Multiple Attribute Decision Making: Methods and Applications. Springer, Heidelberg (1981)

    Book  MATH  Google Scholar 

  54. Erdogan, M.; Kaya, I.: An integrated multi-criteria decision-making methodology based on type-2 fuzzy sets for selection among energy alternatives in Turkey. Iran. J. Fuzzy Syst. 12(1), 1–25 (2015)

    MathSciNet  Google Scholar 

  55. Dymova, L.; Sevastjanov, P.; Tikhonenko, A.: An interval type-2 fuzzy extension of the TOPSIS method using alpha cuts. Knowl. Based Syst. 83, 116–127 (2015)

    Article  Google Scholar 

  56. Mesut, K.; Kaya, I.: Investment project evaluation by a decision making methodology based on type-2 fuzzy sets. Appl. Soft Comput. 27, 399–410 (2015)

    Article  Google Scholar 

  57. Liao, T.W.: Two interval type 2 fuzzy TOPSIS material selection methods. Mater. Des. 88, 1088–1099 (2015)

    Article  Google Scholar 

  58. Deveci, M.; Demirel, N.Ç.; Ahmetoglu, E.: Airline new route selection based on interval type-2 fuzzy MCDM: a case study of new route between Turkey-North American region destinations. J. Air Transp. Manag. 59, 83–99 (2017)

    Article  Google Scholar 

  59. Celik, E.; Akyuz, E.: An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: the case of ship loader. Ocean Eng. 155, 371–381 (2018)

    Article  Google Scholar 

  60. Zhang, Z.; Zhang, S.: A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets. Appl. Math. Model. 37(7), 4948–4971 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. UNE-EN:13186, Transportation-Logistics and services-Public passenger transport-Service quality definition, targeting and measurement, AENOR (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Öztürk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, F. A Hybrid Type-2 Fuzzy Performance Evaluation Model for Public Transport Services. Arab J Sci Eng 46, 10261–10279 (2021). https://doi.org/10.1007/s13369-021-05687-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05687-4

Keywords

Navigation