Skip to main content
Log in

Response Surface Modeling and Optimization of Ni(II) and Cu(II) Ions Competitive Adsorption Capacity by Sewage Sludge Activated Carbon

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, response surface methodology (RSM) was used to evaluate the experimental parameter’s effect in the competitive adsorption capacity of Ni(II) and Cu(II) ions using activated carbon prepared from sewage sludge. The metal removal efficiency was optimized toward various parameters using central composite design (CCD) under RSM. The model’s predictions are in good agreement with experimental results (R2 = 0.986, 0.974 and Adj-R2 = 0.960, 0.950 for Ni(II) and Cu(II) ions, respectively). ANOVA results showed that the process was mainly influenced by the Ni(II) concentration and adsorbent dose, whereas the other factors showed lower effects. The optimum Ni(II) concentration, Cu(II) concentration, adsorbent dose, contact time and temperature were found to be 40 mg/L, 40 mg/L, 4 g/L, 100 min and 30 °C. Under optimal conditions, maximum adsorption capacity of both metals (7.48 and 4.04 mg/g, respectively for Ni(II) and Cu(II) ions) was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fouladgar, M.; Beheshti, M.; Sabzyan, H.: Single and binary adsorption of nickel and copper from aqueous solutions by γ-alumina nanoparticles: equilibrium and kinetic modeling. J. Mol. Liq. 211, 1060–1073 (2015)

    Article  Google Scholar 

  2. Mukke, V.K.: Mercury chloride and copper sulphate induced alterations in enzyme secretary activity of fresh water crab. J. Chem. Pharm. Res. 4, 1308–1311 (2012)

    Google Scholar 

  3. Han, R.; Zou, L.; Zhao, X.; Xu, Y.; Xu, F.; Li, Y.: Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper (II) from solution in fixed bed column. Chem. Eng. J. 149, 123–131 (2009)

    Article  Google Scholar 

  4. Popuri, S.R.; Vijaya, Y.; Boddu, V.M.; Abburi, K.: Adsorptive removal of copper and nickel ions from water using chitosan-coated PVC beads. Biores. Technol. 100, 194–199 (2000)

    Article  Google Scholar 

  5. Ye, S.; Zeng, G.; Wu, H.; Liang, J.; Zhang, C.; Dai, J.; Xiong, W.; Song, B.; Wu, S.; Yu, J.: The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour. Conserv. Recycl. 140, 278–285 (2019)

    Article  Google Scholar 

  6. Ye, S.; Zeng, G.; Wu, H.; Zhang, C.; Liang, J.; Dai, J.; Liu, Z.; Xiong, W.; Wan, J.; Xu, P.; Cheng, M.: Co-occurrence and interactions of pollutants, and their impacts on soil remediation—a review. Crit. Rev. Environ. Sci. Technol. 47(16), 1528–1553 (2017)

    Article  Google Scholar 

  7. Rhazi, M.; Desbriereres, J.; Tolaimate, A.; Rinaudo, M.; Vottero, P.; Alagui, A.: Contribution to the study of the complexation of copper by chitosan and oligomers. Carbohyd. Polym. 43, 1267–1276 (2002)

    Google Scholar 

  8. Rozada, F.; Otero, M.; Moran, A.; Garcia, A.I.: Adsorption of heavy metals onto sewage sludge-derived materials. Biores. Technol. 99, 6332–6338 (2008)

    Article  Google Scholar 

  9. Cardoso, S.P.; Lopes, C.B.; Pereira, E.; Duarte, A.C.; Silva, C.M.: Competitive Removal of Cd2+ and Hg2+ Ions from Water Using Titanosilicate ETS-4: Kinetic Behaviour and Selectivity. Water Air Soil Pollut. 224, 1535 (2013)

    Article  Google Scholar 

  10. Landaburu-Aguirre, J.; Pongrácz, E.; Sarpola, A.; Keiski, R.L.: Simultaneous removal of heavy metals from phosphorous rich real wastewaters by micellar-enhanced ultrafiltration. Sep. Purif. Technol. 88, 130–137 (2012)

    Article  Google Scholar 

  11. Dermentzis, K.: Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization. J. Hazard. Mater. 173, 647–652 (2010)

    Article  Google Scholar 

  12. Bayat, B.: Combined removal of zinc (ii) and cadmium (ii) from aqueous solutions by adsorption onto high-calcium turkish fly ash. Water Air Soil Pollut. 136, 69–92 (2002)

    Article  Google Scholar 

  13. Futalan, C.M.; Kan, C.C.; Dalida, M.L.; Hsien, K.J.; Pascua, C.; Wan, M.W.: Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohyd. Polym. 83, 528–536 (2011)

    Article  Google Scholar 

  14. Malamis, S.; Katsou, E.: A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 252–253, 428–461 (2013)

    Article  Google Scholar 

  15. Kumar, M.; Nandi, M.; Pakshirajan, K.: Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation. J. Environ. Manage. 278, 111555 (2021)

    Article  Google Scholar 

  16. Esposito, A.; Pagnanelli, F.; Lodi, A.; Solisio, C.; Vegliò, F.: Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy 60, 129–141 (2001)

    Article  Google Scholar 

  17. Panayotova, M.; Velikov, B.: Kinetics heavy metal ions removal by use of natural zeolite. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 37, 139–147 (2002)

    Article  Google Scholar 

  18. Liu, C.; Bai, R.; Ly, Q.S.: Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Res. 42, 1511–1522 (2008)

    Article  Google Scholar 

  19. Varma, A.J.; Deshpande, S.V.; Kennedy, J.F.: Metal complexation by chitosan and its derivatives: a review. Carbohyd. Polym. 55(1), 77–93 (2004)

    Article  Google Scholar 

  20. Paulino, A.T.; Minasse, F.A.S.; Guilherme, M.R.; Reis, A.V.; Muniz, E.C.; Nozaki, J.: Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. J. Colloid Interface Sci. 301(2), 479–487 (2006)

    Article  Google Scholar 

  21. Yang, S.; Wu, Y.; Aierken, A.; Zhang, M.; Fang, P.; Fan, Y.; Ming, Z.: Mono/competitive adsorption of Arsenic(III) and Nickel(II) using modified green tea waste. J. Taiwan Inst. Chem Eng. 60, 213–221 (2016)

    Article  Google Scholar 

  22. Sha, H.; Wu, Y.; Fan, Y.: Utilization of industrial waste as a novel adsorbent: Mono/ competitive adsorption of chromium(VI) and nickel(II) using diatomite waste modified by EDTA. App. Organomet. Chem. 32, e3977 (2018)

    Article  Google Scholar 

  23. Ghaee, M.; Shariaty-Niassar, M.; Barzin, J.; Zarghan, A.: Adsorption of macroporous membrane: Equilibrium study. Appl. Surf. Sci. 258, 7732–7743 (2012)

    Article  Google Scholar 

  24. Lekgoba,T., Ntuli,F., Falayi, T.: Application of coal fly ash for treatment of wastewater containing a binary mixture of copper and nickel. Journal of Water Process Engineering. In: press corrected proof.

  25. Liu, Z.-R.; Zhou, S.-Q.: Adsorption Na-bentonite, process. Saf. Environ. Prot. 88, 62–66 (2010)

    Article  Google Scholar 

  26. Futalan, C.M.; Kan, C.-C.; Dalida, M.L.; Hsien, K.-J.; Pascua, C.; Wan, M.-W.: Comparative competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr. Polym. 80, 891–899 (2010)

    Article  Google Scholar 

  27. Islam, M.A.; Awual, M.R.; Angove, M.J.: A review on nickel(II) adsorption in single and binary component systems and future path. J. Environ. Chem. Eng. 7, 103305 (2019)

    Article  Google Scholar 

  28. Hasanpour, M.; Hatami, M.: Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: a review study. Adv. Coll. Interface. Sci. 284, 102–247 (2020)

    Article  Google Scholar 

  29. Abbas, M.; Zaini, A.; Amano, Y.; Machida, M.: Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber. J. Hazard. Mater. 180, 552–560 (2010)

    Article  Google Scholar 

  30. Elouear, Z.; Bouzid, J.; Boujelben, N.: Removal of nickel and cadmium from aqueous solutions by sewage sludge ash: study in single and binary systems. Environ. Technol. 30, 561–570 (2009)

    Article  Google Scholar 

  31. Kadirvelu, K.; Thamaraiselvi, K.; Namasivayam, C.: Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Sep. Purif. Technol. 24, 497–505 (2001)

    Article  Google Scholar 

  32. Hasar, H.: Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 97, 49–57 (2003)

    Article  Google Scholar 

  33. Gupta, V.K.; Suhas Nayak, A.; Agarwal, S.; Chaudhary, M.; Tyagi, I.: Removal of Ni (II) ions from water using scrap tire. J. Mol. Liq. 190, 215–222 (2014)

    Article  Google Scholar 

  34. Kumar, P.S.; Ramalingam, S.; Kirupha, S.D.; Murugesan, A.; Vidhyadevi, T.; Sivanesan, S.: Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chem. Eng. J. 167, 122–131 (2011)

    Article  Google Scholar 

  35. Laksaci, H.; Khelifi, A.; Trari, M.; Adoun, A.: Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides. J. Clean. Prod. 147, 254–262 (2017)

    Article  Google Scholar 

  36. Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M.: Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Biores. Technol. 96, 1518–1521 (2005)

    Article  Google Scholar 

  37. Yanagisawa, H.; Matsumoto, Y.; Machida, M.: Adsorption of Zn(II) and Cd(II) ions onto magnesium and activated carbon composite in aqueous solution. Appl. Surf. Sci. 256, 1619–1623 (2010)

    Article  Google Scholar 

  38. Faraji, H.; Mohamadi, A.A.; Soheil Arezomand, H.R.; Mahvi, A.H.: Kinetics and equilibrium studies of the removal of blue basic 41 and methylene blue from aqueous solution using rice stems. Iran. J. Chem. Chem. Eng. 34(3), 33–42 (2015)

    Google Scholar 

  39. Ratnamala, G.M.; Deshannavar, U.B.; Munyal, S.: Adsorption of reactive blue dye from aqueous solutions using sawdust as adsorbent: optimization, kinetic, and equilibrium studies. Arab J. Sci. Eng. 41, 333–344 (2016)

    Article  Google Scholar 

  40. Lin, Q.H.; Cheng, H.; Chen, G.Y.: Preparation and characterization of carbonaceous adsorbents from sewage sludge using a pilot-scale microwave heating equipment. J. Anal. Appl. Pyrol. 93, 113–119 (2012)

    Article  Google Scholar 

  41. Khosravi, M.; Mehrdadi, N.; Bidhendi, G.N.; Baghdadi, M.: Synthesis of sewage sludge-based carbon/TiO2/ZnO nanocomposite adsorbent for the removal of Ni(II), Cu(II), and chemical oxygen demands from aqueous solutions and industrial wastewater. Water Environ. Res. 92(4), 588–603 (2020)

    Article  Google Scholar 

  42. Zhai, Y.; Wei, X.; Zeng, G.; Zhang, D.; Chu, K.: Study of adsorbent derived from sewage sludge for the removal of Cd2+, Ni2+ in aqueous solutions. Sep. Purif. Technol. 38, 191–196 (2004)

    Article  Google Scholar 

  43. Wang, X.; Liang, X.; Wang, Y.; Wang, X.; Liu, M.; Yin, D.: Adsorption of copper (II) onto activated carbons from sewage sludge by microwave induced phosphoric acid and zinc chloride activation. Desalination 278, 231–237 (2011)

    Article  Google Scholar 

  44. Saeed, A.; Iqbal, M.; Akhtar, M.W.: Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (Black Gram Husk). J. Hazard. Mater. 117, 65–73 (2005)

    Article  Google Scholar 

  45. Ho, Y.S.; Mackay, G.: Competitive sorption of copper and nickel ions from aqueous solution using peat. Adsorption 5, 409–417 (1999)

    Article  Google Scholar 

  46. Kandah, M.; Abu Al-Rub, F.; Al-Dabaibeh, N.: Competitive adsorption of copper-nickel and copper–cadmium binaries on Sheep manure waste. Eng. Life Sci. 25(8), 237–243 (2002)

    Article  Google Scholar 

  47. Soco, E.; Kalembkiewicz, J.: Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash. J. Environ. Chem. Eng. 1, 581–588 (2013)

    Article  Google Scholar 

  48. Wang, X.S.; Li, Z.Z.: Competitive adsorption of nickel and copper ions from aqueous solution using nonliving biomass of the marine brown alga Laminaria japonica. Clean 37(8), 663–668 (2009)

    Google Scholar 

  49. Khelifi, O.; Nacef, M.; Affoune, A.M.: Nickel (II) adsorption from aqueous solutions by physico-chemically modified Sewage Sludge. Iran. J. Chem. Chem. Eng. 37(4), 73–87 (2018)

    Google Scholar 

  50. Sahua, J.N.; Acharya, J.; Meikap, B.C.: Response surface modeling and optimization of chromium (VI) removal from aqueous solution using Tamarind wood activated carbon in batch process. J. Hazard. Mater. 172, 818–825 (2009)

    Article  Google Scholar 

  51. Djaghout, I.; Affoune, A.M.; Chelaghmia, M.L.; Bendjaballah, M.: Experimental investigation of nickel electrodeposits brightness in the presence of surfactants: modeling, optimization and polarization studies. Portug. Electrochim. Acta 33(4), 209–222 (2015)

    Article  Google Scholar 

  52. Roosta, M.; Ghaedi, M.; Daneshfar, A.; Darafarin, S.; Sahraei, R.; Purkait, M.K.: Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. Ultrason. Sonochem. 21, 1441–1450 (2014)

    Article  Google Scholar 

  53. Garg, U.K.; Kaur, M.P.; Garg, V.K.; Sud, D.: Removal of Nickel(II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Biores. Technol. 99, 1325–1331 (2008)

    Article  Google Scholar 

  54. Tehrani, M.S.; Zare-Dorabei, R.: Competitive removal of hazardous dyes from aqueous solution by MIL-68(Al): Derivative spectrophotometric method and response surface methodology approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 160, 8–18 (2016)

    Article  Google Scholar 

  55. Ghaedi, M.; Mazaheri, H.; Khodadoust, S.; Hajati, S.; Purkait, M.K.: Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 135, 479–490 (2015)

    Article  Google Scholar 

  56. Garba, Z.N.; Afidah, A.R.: Process optimization of K2C2O4- activated carbon from prosopis africana seed hulls using response surface methodology. J. Anal. Appl. Pyrol. 107, 306–312 (2014)

    Article  Google Scholar 

  57. Ahmad, M.A.; Alrozi, R.: Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology. Chem. Eng. J. 165, 883–890 (2010)

    Article  Google Scholar 

  58. Pillai, M.G.; Regupathi, I.; Kalavathy, M.H.; Murugesan, T.; Miranda, L.R.: Optimization and analysis of nickel adsorption on microwave irradiated rice husk using response surface methodology (RSM). J. Chem. Technol. Biotechnol. 84, 291–301 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Khelifi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khelifi, O., Affoune, A.M., Nacef, M. et al. Response Surface Modeling and Optimization of Ni(II) and Cu(II) Ions Competitive Adsorption Capacity by Sewage Sludge Activated Carbon. Arab J Sci Eng 47, 5797–5809 (2022). https://doi.org/10.1007/s13369-021-05534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05534-6

Keywords

Navigation