Skip to main content
Log in

Power Transmission Line Fault Detection and Diagnosis Based on Artificial Intelligence Approach and its Development in UAV: A Review

  • Review-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper provides a systematic, comprehensive, up-to-date study of the various artificial intelligence (AI) techniques on the detection and classification of faults on power transmission line. We review the latest start of the art of various intelligent approaches and even discuss the differences and outcomes of implementing intelligent methods in the protection scheme and the integrated protection scheme. Besides, there has been an increase in demand and interest for the application of AI approaches in drone to aid in detection and classification of faults. However, there are not many surveys pertaining to the development of the unmanned aerial vehicle (UAV) for the application of intelligent methods in this field. Thus, we also include in this paper the literature relevant to the implementation of various intelligent approaches in the unmanned aerial vehicle (UAV) for the fault detection and classification on power transmission line. Finally, we discuss the challenges and limitations faced in the implementation and propose ways to bridge the gap in the field for further research. This comprehensive study can act as a platform for new researchers to assess the possible different intelligent methods in detecting and classifying faults on power transmission line with a set of references that were dedicated to the attentive contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Han B.,B., Xiaoyu W. (2016). Learning for tower detection of power line inspection. Int Cong Comput Algor Eng. https://doi.org/10.12783/dtcse/iccae2016/7194

  2. Mei, X., Lu, T., Wu, X., Zhang, B: Insulator surface dirt image detection technology based on improved watershed algorithm. Asia-pacific power and energy engineering conference (2012). https://doi.org/10.1109/appeec.2012.6307691

  3. Halilčević, S.S.: The porosity of high-voltage transmission lines as an indicator of steady-state stability of electric power transmission. Int. Transactions Electr. Energy Syst. (2020). https://doi.org/10.1002/2050-7038.12438

    Article  Google Scholar 

  4. Li, J., Li, M., Wang, Q: A novel insulator detection method for aerial images. International conference on computer and automation engineering (2017). https://doi.org/10.1145/3057039.3057065

  5. Wu, Q.; An, J.: An active contour model based on texture distribution for extracting inhomogeneous insulators from aerial images. IEEE Trans. Geosci. Remote Sens. 52, 3613–3626 (2014)

    Article  Google Scholar 

  6. Venkatasubramanian, V.; Rengaswamy, R.; Yin, K.; Kavuri, S.N.: A review of process fault detection and diagnosis. Comput. Chem. Eng. (2003). https://doi.org/10.1016/s0098-1354(02)00160-6

    Article  Google Scholar 

  7. Singh, R.: Fault detection of electric power transmission line by using neural network. Int. J. Emerg. Technol. Adv. Eng. (2012). https://doi.org/10.1186/s40064-015-1080-x

    Article  Google Scholar 

  8. Prasad, A.; Edward, J.B.; Ravi, K.: A review on fault classification methodologies in power transmission systems: part—I. J. Electr. Syst. Information Technol. (2018). https://doi.org/10.1016/j.jesit.2017.01.004

    Article  Google Scholar 

  9. Prasad, A.; Edward, J.B.; Ravi, K.: A review on fault classification methodologies in power transmission systems: part-II. J. Electr. Syst. Information Technol. (2018). https://doi.org/10.1016/j.jesit.2016.10.003

    Article  Google Scholar 

  10. Yadav, A.; Dash, Y.: An overview of transmission line protection by artificial neural network: fault detection, fault classification, fault location, and fault direction discrimination. Adv. Artif. Neural Syst. (2014). https://doi.org/10.1155/2014/230382

    Article  Google Scholar 

  11. United states department of transportation: part 107 waivers issued. , www.Faa.Govrefwww.faa.gov/uas/commercial_operators/part_107_waivers/waivers_issued/ (2021). Accessed 7 May 2020

  12. Hessine, B. M., Jouini, H., Chebbi, S.: Fault detection and classification approaches in transmission lines using artificial neural networks. IEEE Mediterranean Electrotechnical Conference (2014). https://doi.org/10.1109/MELCON.2014.6820588

  13. Siddiqui, Z.; Park, U.; Lee, S.; Jung, N.; Choi, M.; Lim, C.; Seo, J.: Robust powerline equipment inspection system based on a convolutional neural network. Sensors (2018). https://doi.org/10.3390/s18113837

    Article  Google Scholar 

  14. Jiang, X.; Yuan, J.; Shu, L.; Zhang, Z.; Hu, J.; Mao, F.: Comparison of DC pollution flashover performances of various types of porcelain, glass, and composite insulators. IEEE Trans. Power Deliv. 23, 1183–1190 (2008)

    Article  Google Scholar 

  15. Sampedro, C., Martinez, C., Chauhan, A., Campoy, P.: A supervised approach to electric tower detection and classification for power line inspection. International joint conference on neural (2014). https://doi.org/10.1109/ijcnn.2014.6889836

  16. Martinez C., Sampedro C., Chauhan, A., Campoy, P.: Towards autonomous detection and tracking of electric towers for aerial power line inspection. International conference on unmanned aircraft systems (2014). https://doi.org/10.1109/icuas.2014.6842267

  17. Yang, T.W. Yin, H.; Ruan, Q.Q.; da Han, J.; Qi, J.T.; Yong, Q.; Wang, Z.T.; Sun, Z.Q.: Overhead power line detection from UAV video images. Conference on mechatronics and machine vision in practice. 74–79 (2012)

  18. Yetgin, Ö.E., Şentürk, Z., Gerek, Ö.N.: A comparison of line detection methods for power line avoidance in aircrafts. International conference on electrical and electronics (2015). https://doi.org/10.1109/eleco.2015.7394489

  19. Liu, Y.; Mejias, L.; Li, Z.: Fast power line detection and localization using steerable filter for active UAV guidance. (2012). https://doi.org/10.5194/isprsarchivesxxxix-b3-491-2012

  20. Shong, K.M, Kim, Y.S., Kim, S.G.: Images detection and diagnosis of corona discharge on porcelain insulators at 22.9kV D/L. IEEE international symposium on diagnostics for electric machines, power electronics and drives (2007). https://doi.org/10.1109/demped.2007.4393138.

  21. Saha, M.M.; Izykowski, J.; Rosolowski, E.: Fault location on power networks. Power Syst. (2010). https://doi.org/10.1007/978-1-84882-886-5

    Article  Google Scholar 

  22. Silva, K.; Souza, B.; Brito, N.: Fault detection and classification in transmission lines based on wavelet transform and ANN. IEEE Trans. Power Delivery 21, 2058–2063 (2006)

    Article  Google Scholar 

  23. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.: Going deeper with convolutions. IEEE conference on computer vision and pattern recognition (2015). https://doi.org/10.1109/CVPR.2015.7298594

  24. Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 , (2014)

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. IEEE conference on computer vision and pattern recognition (2016).https://doi.org/10.1109/CVPR.2016.90

  26. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  27. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards realtime object detection with region proposal networks.In Advances in neural information processing systems (2015). https://doi.org/10.1109/TPAMI.2016.2577031

  28. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  29. Jamil, M.; Sharma, S.K.; Singh, R.: Fault detection and classification in electrical power transmission system using artificial neural. Network (2015). https://doi.org/10.1186/s40064-015-1080-x

    Article  Google Scholar 

  30. Kaur, H.; Kaur, M.: Fault classification in a transmission line using Levenberg–Marquardt algorithm based artificial neural network. Advances in intelligent systems and computing data communication and networks. 119–135 (2019)

  31. Rosle, N.; Fadzail, N.F.; Halim, M.I.A.; Rohani, M.N.K.H.; Fahmi, M.I.; Leow, W.Z.; Bakar, N.N.A.: Fault detection and classification in three phase series compensated transmission line using ANN. J. Phys: Conf. Ser. (2020). https://doi.org/10.1088/1742-6596/1432/1/012013

    Article  Google Scholar 

  32. Barros, A. C.: Detecção e Classificação de Faltas de Alta Impedância em Sistemas Elétricos de Potência Usando Lógica Fuzzy. Universidade Estadual Paulista – UNESP (2009)

  33. Decanini, J. G.: Detecção e Classificação de Faltas de Curto-Circuito em Sistemas de Distribuição de Energia Elétrica Usando Lógica Nebulosa. Dissertação (mestrado)-Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira. Área de conhecimento: Automa. 110 (2008)

  34. Vasilic, S.; Kezunovic, M.: Fuzzy ART neural network algorithm for classifying the power system faults. IEEE Trans. Power Delivery 20, 1306–1314 (2005)

    Article  Google Scholar 

  35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. (2012). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  36. Zeiler, M. D., Fergus, R.: Visualizing and understanding convolutional networks. In European conference on computer vision, pp. 818-833. Springer, Link (2014)

  37. Mahanty, R.; Gupta, P.D.: A fuzzy logic based fault classification approach using current samples only. Electr. Power Syst. Res. 77, 501–507 (2007)

    Article  Google Scholar 

  38. Verma, M., Koley, E., Ghosh, S.: Application of fuzzy logic for fault detection and classification in six phase transmission line. IEEE International conference on computational intelligence and computing research (2017). https://doi.org/10.1109/ICCIC.2017.8524150

  39. Bhupendra, K., Yadav, A.: A fuzzy logic system to detect and classify faults for laboratory prototype model of TCSC compensated transmission line. Journal of Power Technologies. http://papers.itc.pw.edu.pl/index.php/JPT/article/view/1290 (2019). Accessed 25 Jan 2021

  40. Bueno, D. M., Santos, E. M. D., Stein, H., Fagundes, A. R., Franco, M. C., Rodrigues, A. H.: High impedance fault detection and classification in medium voltage distribution networks. IEEE PES innovative smart grid technologies conference - Latin America (2019). https://doi.org/10.1109/isgt-la.2019.8895475

  41. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE conference on computer vision and pattern recognition (2014). https://doi.org/10.1109/CVPR.2014.81

    Article  Google Scholar 

  42. Malathi, V., Marimuthu, N.: Multi-class support vector machine approach for fault classification in power transmission line. IEEE International conference on sustainable energy technologies (2008). https://doi.org/10.1109/icset.2008.4746974

  43. Mohammadi, F., Nazri, G. A., Saif, M.: A Fast Fault Detection and Identification Approach in Power Distribution Systems. International conference on power generation systems and renewable energy technologies (2019). https://doi.org/10.1109/PGSRET.2019.8882676

  44. Rao, T.C.S.; Ram, S.S.T.; Subrahmanyam, J.B.V.: Neural network with adaptive evolutionary learning and cascaded support vector machine for fault localization and diagnosis in power distribution system. Evol. Intel. (2020). https://doi.org/10.1007/s12065-020-00359-y

    Article  Google Scholar 

  45. Ray, P., Mishra, D. P., Dey, K., Mishra, P.: Fault detection and classification of a transmission line using discrete wavelet transform and artificial neural network. International conference on information technology (2017). https://doi.org/10.1109/icit.2017.24

  46. Bhowmik, P., Purkait, P., Bhattacharya, K.: A novel wavelet transform and neural network based transmission line fault analysis method. International conference on developments in power systems protection (2008). https://doi.org/10.1049/cp:20080084

  47. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vision 104, 154–171 (2013)

    Article  Google Scholar 

  48. He, K.; Zhang, X.; Ren, S.; Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1904–1916 (2015)

    Article  Google Scholar 

  49. Junfeng, L., Min, L., Qinruo, W.: A novel insulator detection method for aerial images. International conference on computer and automation engineering (2017). https://doi.org/10.1145/3057039.3057065

  50. Matarweh, J., Mustaklem, R., Saleem, A., Mohamed, O.: The application of discrete wavelet transform to classification of power transmission system faults. IEEE Jordan International Joint conference on electrical engineering and information technology (2019). https://doi.org/10.1109/jeeit.2019.8717394

  51. Abdulwahid, A. H.: A new concept of an intelligent protection system based on a discrete wavelet transform and neural network method for smart grids. International conference of the IEEE nigeria computer chapter (2019). https://doi.org/10.1109/nigeriacomputconf45974.2019.8949618

  52. Das, S.: Recent trends in communication and intelligent systems. Algorithms Intell. Syst. (2020). https://doi.org/10.1007/978-981-15-0426-6

    Article  Google Scholar 

  53. Aker, E., Otman, M. L., Veerasamy, V., Aris, I., Wahab, N. A., Hizam, H.: Fault detection and classification of shunt compensated transmission line using discrete wavelet transform and naive bayes classifier. Energies. (2019). https://doi.org/10.20944/preprints201910.0148.v1

  54. Adly, A.R.; Aleem, S.H.E.A.; Algabalawy, M.A.; Jurado, F.; Ali, Z.M.: A novel protection scheme for multi-terminal transmission lines based on wavelet transform. Electr. Power Syst. Res. 183, 106–286 (2020)

    Article  Google Scholar 

  55. Nguyen, T.; Liao, Y.: Transmission line fault type classification based on novel features and neuro-fuzzy system. Electr. Power Compon. Syst. (2010). https://doi.org/10.1080/15325000903489702

    Article  Google Scholar 

  56. Tamer, K., Hassan, M. A. M.: Adaptive neuro fuzzy inference system (ANFIS) for fault classification in the transmission lines. World congress on electronics and electrical engineering. https://www.researchgate.net/publication/260230393_Adaptive_Neuro_Fuzzy_Inference_System_ANFIS_For_Fault_Classification_in_the_Transmission_Lines (2009). Accessed 26 December 2019

  57. Nguyen, T.; Liao, Y.: Transmission line fault type classification based on novel features and neuro-fuzzy system. Electr. Power Compon. Syst. 38, 695–709 (2010)

    Article  Google Scholar 

  58. Samantaray, S.; Dash, P.; Panda, G.: Fault classification and location using HS-transform and radial basis function neural network. Electr. Power Syst. Res. 76, 897–905 (2006)

    Article  Google Scholar 

  59. Leuven, K.U.: Alternative transient program, user manual and rulebook. EMTP Center, Belgium (1987)

    Google Scholar 

  60. Liao, Y.: Unsynchronized fault location based on distributed parameter line model. Electr. Power Compon. Syst. 35, 1061–1077 (2007)

    Article  Google Scholar 

  61. Veerasamy, V.; Wahab, N.A.; Ramachandran, R.; Mansoor, M.; Thirumeni, M.; Othman, M.L.: High impedance fault detection in medium voltage distribution network using discrete wavelet transform and adaptive neuro-fuzzy inference system. Energies 11, 3330 (2018)

    Article  Google Scholar 

  62. Peters, J.F.; Skowron, A.; Suraj, Z.; Han, L.; Ramanna, S.: Design of rough neurons: rough set foundation and petri net model. Lect. Notes Comput. Sci. Found. Intell. Syst. (2000). https://doi.org/10.1007/3-540-39963-1_30

    Article  MATH  Google Scholar 

  63. Girshick, R.: Fast r-cnn. IEEE international conference on computer vision (2015). https://doi.org/10.1109/ICCV.2015.169

  64. Prasad, C.; Nayak, P.K.: A DFT-ED based approach for detection and classification of faults in electric power transmission networks. Ain Shams Eng. J. (2019). https://doi.org/10.1016/j.asej.2018.02.004

    Article  Google Scholar 

  65. Prasad, C.; Nayak, P.K.: A DFT-ED based approach for detection and classification of faults in electric power transmission networks. Ain Shams Eng. J. 10, 171–178 (2019)

    Article  Google Scholar 

  66. Wang, J.; Peng, H.; Yu, W.; Ming, J.; Pérez-Jiménez, M.J.; Tao, C.; Huang, X.: Interval-valued fuzzy spiking neural P systems for fault diagnosis of power transmission networks. Eng. Appl. Artif. Intell. 82, 102–109 (2019)

    Article  Google Scholar 

  67. Kumar, B, Yadav, A.: A fuzzy logic system to detect and classify faults for laboratory prototype model of TCSC compensated transmission line. journal of power technologies. http://papers.itc.pw.edu.pl/index.php/JPT/article/view/1290 (2019). Accessed 25 Jan 2021

  68. Mishra, P.K.; Yadav, A.: Combined DFT and fuzzy based faulty phase selection and classification in a series compensated transmission line. Model Simul. Eng. (2019). https://doi.org/10.1155/2019/3467050

    Article  Google Scholar 

  69. Fan, L.P.; Yuan, Z.Q.; Zhang, K.: System with insulated neutral point earthing of fault line detection fusion technology study based on fuzzy and rough set theory. Central China Electr. Power. 1, 7–11 (2009)

    Google Scholar 

  70. Huang, T.; Voronca, S.L.; Purcarea, A.; Estebsari, A.; Bompard, E.: Analysis of chain of events in major historic power outages. Adv. Electr. Comput. Eng. 14, 63–70 (2014)

    Article  Google Scholar 

  71. Song, T.; Pan, L.; Wu, T.; Zheng, P.; Wong, M.L.D.; Rodriguez-Paton, A.: Spiking neural P systems with learning functions. IEEE Trans. Nanobiosci. (2019). https://doi.org/10.1109/tnb.2019.2896981

    Article  Google Scholar 

  72. Huang, K., Zhang, G., Wei, X., Rong, H., He, Y., Wang, T.: Fault classification of power transmission lines using fuzzy reasoning spiking neural P systems. Bio-inspired computing – theories and applications communications in computer and information science (2016). https://doi.org/10.1007/978-981-10-3611-8_12

  73. Haina, R.; Ming, Z.; Zhipeng, F.; Gexiang, Z.; Kang, H.: A novel approach to fault classification of power transmission lines using singular value decomposition and fuzzy reasoning spiking neural P systems. Romanian J. Information Sci. Technol. 20, 18–31 (2017)

    Google Scholar 

  74. Rong, H., Ge, M., Zhang, G., Zhu, M.: An approach for detecting fault lines in a small current grounding system using fuzzy reasoning spiking neural P systems. International journal of computers communications and control (2018). https://doi.org/10.15837/ijccc.2018.4.3220

  75. Wang, J.; Peng, H.; Yu, W.; Ming, J.; Perez-Jimenez, M.J.; Tao, C.; Huang, X.: Interval-valued fuzzy spiking neural P systems for fault diagnosis of power transmission networks. Eng. Appl. Artif. Intell. (2019). https://doi.org/10.1016/j.engappai.2019.03.014

    Article  Google Scholar 

  76. Liu, W.; Wang, T.; Zang, T.; Huang, Z.; Wang, J.; Huang, T.; Wei, X.; Li, C.: A fault diagnosis method for power transmission networks based on spiking neural P systems with self-updating rules considering biological apoptosis mechanism. Complexity (2020). https://doi.org/10.1155/2020/2462647

    Article  Google Scholar 

  77. Lee, K.B.; Cheon, S.; Kim, C.O.: A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. (2017). https://doi.org/10.1109/tsm.2017.2676245

    Article  Google Scholar 

  78. Wang, M., Tong, W., Liu, S.: Fault detection for power line based on convolution neural network. International conference on deep learning technologies (2017). https://doi.org/10.1145/3094243.3094254

  79. Siddiqui, Z.A.; Park, U.; Lee, S.-W.; Jung, N.-J.; Choi, M.; Lim, C.; Seo, J.-H.: Robust powerline equipment inspection system based on a convolutional neural network. Sensors. 18, 3837 (2018)

    Article  Google Scholar 

  80. Hui, X.; Bian, J.; Zhao, X.; Tan, M.: Vision-based autonomous navigation approach for unmanned aerial vehicle transmission-line inspection. Int. J. Adv. Rob. Syst. (2018). https://doi.org/10.1177/1729881417752821

    Article  Google Scholar 

  81. Zhao, Z.; Zhen, Z.; Zhang, L.; Qi, Y.; Kong, Y.; Zhang, K.: Insulator detection method in inspection image based on improved faster R-CNN. Energies (2019). https://doi.org/10.3390/en12071204

    Article  Google Scholar 

  82. Tao, X.; Zhang, D.; Wang, Z.; Liu, X.; Zhang, H.; Xu, D.: Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Transactions Syst. Man, Cybern.: Syst. 50, 1486–1498 (2020)

    Article  Google Scholar 

  83. Adly, A.R.; El Sehiemy, R.A.; Abdelaziz, A.Y.: A novel single end measuring system based fast identification scheme for transmission line faults. Measurement (2017). https://doi.org/10.1016/j.measurement.2017.02.041

    Article  Google Scholar 

  84. Kapoor, G.: Protection scheme for double circuit transmission lines based on wavelet transform. ICTACT Journal on Microelectronics (2018). https://doi.org/10.21917/ijme.2018.0114

  85. Adly, AR., Abdel Aleem, SHE., Elsadd, MA., Ali, ZM.: Wavelet Packet Transform Applied to a Series-Compensated Line a Novel Scheme for Fault Identification. Measurement, (2019). https://doi.org/10.1016/j.measurement.2019.107156

  86. Adly, A.R.; Ali, Z.M.; Elsadd, M.A.; Abdel Mageed, H.M.; Abdel Aleem, S.H.E.: An integrated scheme for a directional relay in the presence of a series-compensated line. Int. J. Electr. Power Energy Syst. (2020). https://doi.org/10.1016/j.ijepes.2020.106024

    Article  Google Scholar 

  87. Tao, X., Zhang, D., Wang, Z., Liu, X., Zhang, H., Xu, D.: Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE transactions on systems, man, and cybernetics: systems (2018). https://doi.org/10.1109/tsmc.2018.2871750

  88. Korki, M., Shankar, N. D., Naymeshbahi, S. R., Waseem, S. M., Hodges, S.: Automatic fault detection of power lines using unmanned aerial vehicle (UAV). International conference on unmanned vehicle systems-Oman (2019). https://doi.org/10.1109/UVS.2019.8658283

  89. LIoyd, J.M.: Thermal imaging systems. Springer, Cham (2013)

    Google Scholar 

  90. Crary, S.B.: Power system stability, Vol. 2. John, NY (1947)

    Google Scholar 

  91. Zormpas, A., Moirogiorgou, K., Kalaitzakis, K., Plokamakis, G. A., Partsinevelos, P., Giakos, G., Zervakis, M.: Power transmission lines inspection using properly equipped unmanned aerial vehicle (UAV). IEEE international conference on imaging systems and techniques (2018). https://doi.org/10.1109/ist.2018.8577142

  92. Dalstein, T.; Kulicke, B.: Neural network approach to fault classification for high speed protective relaying. IEEE Trans. Power Delivery 10, 1002–1009 (1995)

    Article  Google Scholar 

  93. Kezunovic, M.; Rikalo, I.: Detect and classify faults using neural nets. IEEE Comput. Appl. Power 9, 42–47 (1996)

    Article  Google Scholar 

  94. United states department of transportation: part 107 waivers issued.www.faa.gov.www.faa.gov/uas/commercial_operators/part_107_waivers/waivers_issued/ (2021). Accessed 25 Jan 2021

  95. Mica, John, L.: Text - H.R.658 - 112th Congress (2011–2012): FAA modernization and reform act of 2012. www.Congress.Gov refwww.congress.gov/bill/112th-congress/house-bill/658/text (2012). Accessed 9 Jan. 2021

  96. Bruns, Isaac: StackPath. www.Utilityproducts.comwww.utilityproducts.com/line-construction-maintenance/article/16003823/drones-for-power-line-inspections (2019). Accessed 9 Jan. 2021

  97. Measure: Drones in transmission and distribution utilities. www.Measure.com refwww.measure.com/drones-in-transmission-distribution-utilities (2018). Accessed 9 Jan. 2021

  98. Global transmission report: global transmission report : aerial technologies: Gaining popularity in power transmission segment. www.Globaltransmission.Infowww.globaltransmission.info/archive.php?id=28843 (2017). Accessed 9 Jan. 2021

  99. Civil aviation safety authority: “List of RPA operator certificate holders. Civil aviation safety authority. www.casa.gov.au/rpa-operator-certificate-holders (2021). Accessed 9 Jan 2021

  100. Allsure Insurance: “Drone insurance|Unmanned aerial vehicles|Remotely piloted aircraft. Allsure Insurance. www.allsure.com.au/drone-insurance/ (2021). Accessed 9 Jan. 2021

  101. Liu, L., Wang, W., Yong, J., Ren, J.: Automatic extraction of power lines from aerial images based on hough transform. DEStech transactions on engineering and technology research (2017). https://doi.org/10.12783/dtetr/emme2016/9802

  102. Baker, Lewis, Steven, M., Tobias, L., Carl, R.: Power line detection using hough transform and line tracing techniques. International conference on image and vision computing New Zealand (2016). https://doi.org/10.1109/ivcnz.2016.7804438

  103. Turing, A.M.: Computing machinery and intelligence. Mind (1950). https://doi.org/10.1093/mind/lix.236.433

    Article  MathSciNet  Google Scholar 

  104. Moor, J.H.: An analysis of the turing test. Philos. Stud. 30, 249–257 (1976)

    Article  Google Scholar 

  105. Crevier, D.: AI: the tumultuous history of the search for artificial intelligence. Basic Books, New York (1993)

    Google Scholar 

  106. Pan, Y.: Heading toward artificial intelligence: a modern approach, Vol. 2. Prentice Hall, Upper Saddle River, NJ (2003)

    Google Scholar 

  107. Kurnaz, S.; Cetin, O.; Kaynak, O.: Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Syst Appl (2010). https://doi.org/10.1016/j.eswa.2009.06.009Get

    Article  Google Scholar 

  108. Cherian, A.; Andersh, J.; Morellas, V.; Papanikolopoulos, N.; Mettler, B.: Autonomous altitude estimation of a UAV using a single onboard camera. IEEE Xplore (2009). https://doi.org/10.1109/IROS.2009.5354307

    Article  Google Scholar 

  109. Efe, M.: Önder: neural network assisted computationally simple PI$^\Lambda$D$^\Mu$ control of a quadrotor UAV. IEEE Trans. Industr. Inf. (2011). https://doi.org/10.1109/TII.2011.2123906

    Article  Google Scholar 

  110. Chowdhary, G. V., Eric, N. J.: Theory and flight-test validation of a concurrent-learning adaptive controller. Journal of guidance, control, and dynamics (2011). https://doi.org/10.2514/1.46866

  111. Chowdhary, G., Wu, T., Cutler, M., Jonathan, P. H.: Rapid transfer of controllers between UAVs using learning-based adaptive control. IEEE International Conference on Robotics and Automation (2013). https://doi.org/10.1109/icra.2013.6631353

  112. Shin, J.; Kim, H.J.; Kim, Y.: Adaptive support vector regression for UAV flight control. Neural Netw. (2011). https://doi.org/10.1016/j.neunet.2010.09.011

    Article  MATH  Google Scholar 

  113. Ronaldo, B. D. S. S., Sidney, N. G., Lucio, C. N. J.: An experimental validation of reinforcement learning applied to the position control of UAVs. IEEE international conference on systems, man, and cybernetics (2012). https://doi.org/10.1109/icsmc.2012.6378172

  114. Scherer, S.; Rehder, J.; Achar, S.; Scherer, S.; Cover, H.; Chambers, A.; Nuske, S.; Singh, S.: River mapping from a flying robot: state estimation, river detection, and obstacle mapping. Auton. Robot. (2012). https://doi.org/10.1007/s10514-012-9293-0

    Article  Google Scholar 

  115. Wang, S., Li, B., Geng, Q.: Research of RBF Neural Network PID control algorithm for longitudinal channel control of small UAV. IEEE international conference on control and automation (2013). https://doi.org/10.1109/icca.2013.6565086

  116. Kan, E.M.; Lim, M.H.; Ong, Y.S.; Tan, A.H.; Yeo, S.P.: Extreme learning machine terrain-based navigation for unmanned aerial vehicles. Neural Comput. Appl. (2012). https://doi.org/10.1007/s00521-012-0866-9

    Article  Google Scholar 

  117. Lin, C.M.; Tai, C.F.; Chung, C.C.: Intelligent control system design for UAV using a recurrent wavelet neural network. Neural Comput. Appl. (2012). https://doi.org/10.1007/s00521-012-1242-5

    Article  Google Scholar 

  118. Zhang, B.; Liu, W.; Mao, Z.; Liu, J.; Shen, L.: Cooperative and geometric learning algorithm (CGLA) for path planning of UAVs with limited information. Automatica (2014). https://doi.org/10.1016/j.automatica.2013.12.035

    Article  MATH  Google Scholar 

  119. Guo, X., Denman, S., Fookes, C., Mejias, L., Sridharan, S.: Automatic UAV forced landing site detection using machine learning. International conference on digital image computing: techniques and applications (2014). https://doi.org/10.1109/dicta.2014.7008097

  120. Bansal, S., Anayo, K. A., Frank, J. J., Laine, F., Tomlin, C. J.: Learning quadrotor dynamics using neural network for flight control. Conference on Decision and Control (2016). https://doi.org/10.1109/cdc.2016.7798978

  121. Rebetez, J; Satizábal, HF; Mota, M.: Augmenting a convolutional neural network with local histograms: acase study in crop classification from high-resolution UAV imagery. In European symposium on artificial neural networks, computational intelligence and machine learning. 515–520 (2016)

  122. Giusti, A.; Guzzi, J.; Ciresan, D.C.; He, F.L.; Rodriguez, J.P.; Fontana, F.; Faessler, M.; Forster, C.; Schmidhuber, J.; Caro, G.D.; Scaramuzza, D.; Gambardella, L.M.: A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robotics and Automation Lett. (2016). https://doi.org/10.1109/lra.2015.2509024

    Article  Google Scholar 

  123. Xu, H., Carrillo, L. R. G.: Fast reinforcement learning based distributed optimal flocking control and network co-design for uncertain networked multi-UAV system. Unmanned Systems Technology XIX (2017). https://doi.org/10.1117/12.2262877

  124. Smolyanskiy, N., Kamenev, A., Smith, J., Birchfield, S.: Toward low-flying autonomous MAV Trail navigation using deep neural networks for environmental awareness. IEEE/RSJ International conference on intelligent robots and systems (2017). https://doi.org/10.1109/iros.2017.8206285

  125. Bao, F.: Information security practice and experience. Springer, Cham (2017)

    Google Scholar 

  126. Loquercio, A.; Maqueda, A.I.; delBlanco, C.R.: Dronet: learning to fly by driving. IEEE Robot Automat Lett. 3, 1088–1095 (2018)

    Article  Google Scholar 

  127. Jalil, B.; Leone, G.R.; Martinelli, M.; Pascali, D.M.M.A.; Berton, A.: Fault detection in power equipment via an unmanned aerial system using multi modal data. Sensors (2019). https://doi.org/10.3390/s19133014

    Article  Google Scholar 

  128. Barták, R, Vomlelová, M.: Using machine learning to identify activities of a flying drone from sensor readings. International Florida artificial intelligence research society conference. 436–441 (2017)

  129. Kaiming, H., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. IEEE International Conference on Computer Vision (2017). https://doi.org/10.1109/iccv.2017.322

  130. Srikanth, V., Frye, M.: Mask R-CNN powerline detector: a deep learning approach with applications to a UAV. AIAA/IEEE 39th digital avionics systems conference (2020). https://doi.org/10.1109/dasc50938.2020.9256456

  131. Laughton, M.A.: Artificial intelligence techniques in power systems. IEE Colloquium Artific. Intell. Techniques Power Syst. (1997). https://doi.org/10.1049/ic:19971179

    Article  Google Scholar 

  132. Behrooz, F.; Mariun, N.; Marhaban, M.H.; Radzi, M.A.M.; Ramli, A.R.: Review of control techniques for HVAC systems—nonlinearity approaches based on fuzzy cognitive maps. Energies. 11, 495 (2018)

    Article  Google Scholar 

  133. Shuma, A.; Sinha, N.; Dorendrajit, T.: Fuzzy logic based on-line fault detection and classification in transmission line. Springerplus (2016). https://doi.org/10.1186/s40064-016-2669-4

    Article  Google Scholar 

  134. Chuang, D.; Wang, S.; Huang, Z.; Tan, L.J.: Unmanned aerial vehicles for power line inspection a cooperative way in platforms and communications. J. Commun. 9, 687–692 (2014). https://doi.org/10.12720/jcm.9.9.687-6

    Article  Google Scholar 

  135. Delair: Newsroom-professional drones and UAV. Delair Tech. https://delair.aero/press/ (2014). Accessed 9 Jan 2021

  136. Ajith, A.; Das, S.: Computational intelligence in power engineering. Springer, Berlin (2013)

    Google Scholar 

  137. Jadidbonab, M.; Mohammadi-Ivatloo, B.; Marzband, M.; Siano, P.: Short-term self-scheduling of virtual energy hub plant within thermal energy market. IEEE Trans. Industr. Electron. (2021). https://doi.org/10.1109/tie.2020.2978707

    Article  Google Scholar 

  138. Gholinejad, H.R.; Loni, A.; Adabi, J.; Marzband, M.: A Hierarchical Energy Management System for Multiple Home Energy Hubs in Neighborhood Grids. J. Build. Eng. (2020). https://doi.org/10.1016/j.jobe.2019.101028

    Article  Google Scholar 

  139. Morteza, N.H.; Mirzaei, M.A.; Mohammandi-Ivatloo, B.; Marband, M.; Ebeed, M.: Economic-environmental effect of power to gas technology in coupled electricity and gas systems with price-responsive shiftable loads. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.118769

    Article  Google Scholar 

  140. Hossam-Eldin, A.; Lotfy, A.; Elgamal, M.; Ebeed, M.: Artificial Intelligence-based Short-circuit Fault Identifier for MT-HVDC Systems. IET Gener. Transm. Distribution 10, 2436–2443 (2018). https://doi.org/10.1049/iet-gtd.2017.1345

    Article  Google Scholar 

  141. Ola, S.R.; Saraswat, A.; Goyal, S.K.; Sharma, V.; Khan, B.; Mahela, O.P.; Alhelou, H.H.; Siano, P.: Alienation coefficient and wigner distribution function based protection scheme for hybrid power system network with renewable energy penetration. Energies (2020). https://doi.org/10.3390/en13051120

    Article  Google Scholar 

  142. Biden, J.: Plan for climate change and environmental justice|Joe Biden. Joe Biden for President: Official Campaign Website. https://joebiden.com/climate-plan/ (2020). Accessed 9 Jan 2021

Download references

Acknowledgement

The authors would like to thank all the anonymous reviewers and editors handling the submission. This work was supported by Xiamen University Malaysia Research Fund under Grant XMUMRF/2018-C2/IECE/0001 and Guangxi University under Grant A3020051008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shen Yuong Wong or Hui Hwang Goh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, S.Y., Choe, C.W.C., Goh, H.H. et al. Power Transmission Line Fault Detection and Diagnosis Based on Artificial Intelligence Approach and its Development in UAV: A Review. Arab J Sci Eng 46, 9305–9331 (2021). https://doi.org/10.1007/s13369-021-05522-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05522-w

Keywords

Navigation