Skip to main content
Log in

Experimental and Numerical Investigations of Multi-leaks Detection in a Nonhomogenous Pipeline System

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper focuses on an experimental procedure to localize multiple leaks in a nonhomogenous hydraulic pipeline system made up of three portions of two different materials. Then, an experimental setup originally designed for water hammer study was modified and adapted for leak detection using transients. Two leaks were made in some particular locations in the main pipe and a transient event through a rapid closure of a downstream valve was created. To mimic common practical issues that may be encountered, three main leakage cases were considered; a single leak, two simultaneous leaks and two successive leaks (i.e., one leak that appears followed by an abrupt appearance of a second leak after a period of time). Leaks were experimentally localized by analyzing obtained pressure signals in the excitation point. Results were validated through comparison with numerical ones obtained using the method of characteristics. Additionally, a novel formula to localize the second leak in a successive leaks scenario was presented and its accuracy was confirmed for our test case. Experimental techniques presented in this paper and performed on a test bench at lab scale can be extended and tested on large scale hydraulic pipeline systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ferrante, M.; Brunone, B.: Pipe system diagnosis and leak detection by unsteady-state tests. 1. Harmonic analysis. Adv. Water Resour. 26, 95–105 (2003). https://doi.org/10.1016/s0309-1708(02)00101-x

    Article  Google Scholar 

  2. Covas, D.; Ramos, H.; Graham, N.; Maksimovic, C.: Application of hydraulic transients for leak detection in water supply systems. Water Supply 4(5), 365–374 (2004). https://doi.org/10.2166/ws.2004.0127

    Article  Google Scholar 

  3. Colombo, A.F.; Lee, P.; Karney, B.W.: A selective literature review of transient-based leak detection methods. J. Hydro-Environ. Res. 2, 212–227 (2009). https://doi.org/10.1016/j.jher.2009.02.003

    Article  Google Scholar 

  4. Cheung, B.W.Y.; Lai, W.W.L.: Field validation of water-pipe leakage detection through spatial and time-lapse analysis of GPR wave velocity. Near Surf. Geophys. 17(3), 197–310 (2019). https://doi.org/10.1002/nsg.12041

    Article  Google Scholar 

  5. Feng, Q.; Yan, B.; Chen, P.; Shirazi, S.A.: Failure analysis and simulation model of pinhole corrosion of the refined oil pipeline. Eng. Fail. Anal. 106, 104177 (2019). https://doi.org/10.1016/j.engfailanal.2019.104177

    Article  Google Scholar 

  6. Lazhar, A.; Hadj-Taieb, L.; Hadj-Taieb, E.: Two leaks detection in viscoelastic pipeline systems by means of transient. J. Loss Prevent. Proc. 26(6), 1341–1351 (2013). https://doi.org/10.1016/j.jlp.2013.08.007

    Article  Google Scholar 

  7. Brunone, B.; Meniconi, S.; Capponi, C.: Numerical analysis of the transient pressure damping in a single polymeric pipe with a leak. Urban Water J. 15, 760–768 (2019). https://doi.org/10.1080/1573062X.2018.1547772

    Article  Google Scholar 

  8. Zhang, Q.; Wu, F.; Yang, Z.; Li, G.; Zuo, J.: Simulation of the transient characteristics of water pipeline leakage with different bending angles. Water 11(9), 1871–1885 (2019). https://doi.org/10.3390/w11091871

    Article  Google Scholar 

  9. Martini, A.; Troncossi, M.; Rivola, A.: Leak Detection in water-filled small-diameter polyethylene pipes by means of acoustic emission measurements. Appl. Sci. 7(1), 2 (2017). https://doi.org/10.3390/app7010002

    Article  Google Scholar 

  10. Meniconi, S.; Brunone, B.; Ferrante, M.; Massari, C.: Numerical and experimental investigation of leaks in viscoelastic pressurized pipe flow. Drink. Water Eng. Sci. 6, 11–16 (2013). https://doi.org/10.5194/dwes-6-11-2013

    Article  Google Scholar 

  11. Wang, X.; Ghidaoui, M.S.; Lin, J.: Identification of multiple leaks in pipeline III: experimental results. Mech. Syst. Signal Pr. 130, 395–408 (2019). https://doi.org/10.1016/j.ymssp.2019.05.015

    Article  Google Scholar 

  12. Brunone, B.; Ferrante, M.: Detecting leaks in pressurized pipes by means of transients. J. Hydraul. Res. 39(5), 539–547 (2001). https://doi.org/10.1080/00221686.2001.9628278

    Article  Google Scholar 

  13. Brunone, B.: Transient test based technique for leak detection in outfall pipes. J. Water Res. Plan. Man. 125(5), 302–306 (1999). https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(302)

    Article  Google Scholar 

  14. Covas, D.; Ramos, H.: Practical methods for leakage control, detection and location in pressurised systems. In: 13th International Conference on Pipeline Protection (1999)

  15. Lay-Ekuakille, A.; Vendramin, G.; Trotta, A.: Spectral analysis of leak detection in a zigzag pipeline: a filter diagonalization method-based algorithm application. Measurement 42, 358–367 (2009). https://doi.org/10.1016/j.measurement.2008.07.007

    Article  Google Scholar 

  16. Lay-Ekuakille, A.; Vergallo, P.; Trotta, A.: Impedance method for leak detection in zigzag pipelines. Meas. Sci. Rev. 10, 209–213 (2010). https://doi.org/10.2478/v10048-010-0036-0

    Article  Google Scholar 

  17. Taghvaei, M.; Beck, S.B.M.; Staszewski, W.J.: Leak detection in pipeline networks using low-profile piezoceramic transducers. Struct. Control Health Monit. 14, 1063–1082 (2007). https://doi.org/10.1002/stc.187

    Article  Google Scholar 

  18. Covas, D.; Ramos, H.; de Almeida, A.B.: Standing wave difference method for leak detection in pipeline systems. J. Hydraul. Eng. 131, 1106–1116 (2005). https://doi.org/10.1061/(ASCE)0733-9429(2005)131:12(1106)

    Article  Google Scholar 

  19. Lee, P.J.; Lambert, M.F.; Simpson, A.R.; Vítkovský, J.P.; Liggett, J.: Experimental verification of the frequency response method for pipeline leak detection. J. Hydraul. Res. 44, 693–707 (2006). https://doi.org/10.1080/00221686.2006.9521718

    Article  Google Scholar 

  20. Ayed, L.; Hadj Taïeb, L.; Hadj Taïeb, E.: Impedance method for modeling and locating leak with cylindrical geometry. In: Fakhfakh, T.; Bartelmus, W.; Chaari, F.; Zimroz, R.; Haddar, M. (Eds.) Condition monitoring of machinery in non-stationary operations. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28768-8_12

    Chapter  MATH  Google Scholar 

  21. Das, R.: A simulated annealing-based inverse computational fluid dynamics model for unknown parameter estimation in fluid flow problem. Int. J. Comput. Fluid Dyn. 26(9–10), 499–513 (2012). https://doi.org/10.1080/10618562.2011.632375

    Article  MathSciNet  Google Scholar 

  22. Cao, H.; Mohareb, M.; Nistor, I.: Finite element for the dynamic analysis of pipes subjected to water hammer. J. Fluids Struct. 93, 31–47 (2020). https://doi.org/10.1016/j.jfluidstructs.2019

    Article  Google Scholar 

  23. Guo, Q.; Zhou, J.; Li, Y.; Guan, X.; Liu, D.; Zhang, J.: Fluid-structure interaction response of a water conveyance system with a surge chamber during water hammer. Water (2020). https://doi.org/10.3390/w12041025

  24. Hafsi, Z.; Ayed, L.; Elaoud, S.: Characteristic mesh grid method for Transient analysis of natural gas flow in Pipelines networks. UPB Sci. Bull., Ser. D: Mech. Eng. 82(2), 119–130 (2020)

    Google Scholar 

  25. Bettaieb, N.; Guidara, M.A.; Haj Taieb, E.: Impact of metallic-plastic pipe configurations on transient pressure response in branched WDN. Int J Pres Ves Pip. 188, 104204 (2020). https://doi.org/10.1016/j.ijpvp.2020.104204

    Article  Google Scholar 

  26. Triki, A.: Water-hammer control in pressurized-pipe flow using a branched polymeric penstock. J. Pipeline Syst. Eng. Pract. 8(4), 04017024 (2017). https://doi.org/10.1061/(ASCE)PS.1949-1204.0000277

    Article  Google Scholar 

  27. Elaoud, S.; Hadj-Taïeb, E.: Transient flow in pipelines of high-pressure hydrogen–natural gas mixtures. Int. J. Hydrogen Energ. 33, 4824–4832 (2008). https://doi.org/10.1016/j.ijhydene.2008.06.032

    Article  Google Scholar 

  28. Twyman, J.: Transient flow analysis using the method of characteristics MOC with five-point interpolation scheme. Obras y Proyectos. 24, 62–70 (2018). https://doi.org/10.4067/s0718-28132018000200062

    Article  Google Scholar 

  29. Chaudhry, M.H. Applied Hydraulic Transients, 3rd edn., Springer, New York, Heidelberg, Dordrecht, London (2014). https://doi.org/10.1007/978-1-4614-8538-4

  30. Twyman, J.: Wave speed calculation for water hammer analysis. Obras Proyectos. 20, 86–92 (2016). https://doi.org/10.4067/S0718-28132016000200007

    Article  Google Scholar 

  31. Vardy, A.E.; Tijsseling, A.S.: Method of characteristics for transient, spherical flows. Appl. Math. Model. 77, 810–828 (2020). https://doi.org/10.1016/j.apm.2019.07.037

    Article  MathSciNet  MATH  Google Scholar 

  32. Gunt HAMBURG, HM 155 Water hammer in pipes. https://www.gunt.de/en/products/fluid-mechanics/transient-flow/water-hammer/water-hammer-in-pipes/070.15500/hm155/glct-1:pa-148:ca-782:pr-590. Accessed 15 Dec 2020

  33. Elaoud, S.; Hadj-Taïeb, L.; Hadj-Taïeb, E.: Leak detection of hydrogen-natural gas mixtures in pipes using the characteristics method of specified time intervals. J. Loss Prevent. Proc. 23, 637–645 (2010). https://doi.org/10.1016/j.jlp.2010.06.015

    Article  Google Scholar 

Download references

Acknowledgment

The support of the staff of the Energetic Laboratory at the Higher Institute of Technological Studies of Gafsa (Tunisia), that allowed conducting experimental tests, is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazhar Ayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayed, L., Hafsi, Z. Experimental and Numerical Investigations of Multi-leaks Detection in a Nonhomogenous Pipeline System. Arab J Sci Eng 46, 7729–7739 (2021). https://doi.org/10.1007/s13369-021-05491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05491-0

Keywords

Navigation