Skip to main content
Log in

Design of Pixel Circuit Using a-IGZO TFTs to Enhance Uniformity of AMOLED Displays by Threshold Voltage Compensation

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article presents a novel voltage-programmed pixel circuit using a-IGZO TFTs to effectively compensate threshold voltage (VTH) variations of driving TFT. The compensation is very important to maintain the pixel brightness of active-matrix organic light-emitting diodes (AMOLED) displays. The proposed pixel design uses four-phase clocking schemes: reset period, VTH detection period, data input period and emission period. To maintain uniformity in phases, the duration of all the phases is taken to be same which results in easier design of the multi-phase clock. Moreover, the switching speed of control signals is as high as 25 kHz, ensuring a high frame rate. The circuit has been simulated extensively, and the operation has been verified using SPICE models of a-IGZO TFT and OLED on Cadence Spectre. The circuit also achieves high contrast as OLED does not emit light in any periods except the emission period. The OLED current error in the proposed design for a VTH variation of 170% is below 0.1%. This circuit also provides a high aperture ratio of 51.6%, which ensures high resolution of AMOLED displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kim, H.D.; Chung, H.; Berkeley, B.H.; Kim, S.S.: Emerging technologies for the commercialization of AMOLED TVs. Inf. Disp. 1975(25), 18–22 (2009)

    Google Scholar 

  2. Kane, M.G.: AMOLED display technology and applications. In: Flexible Carbon-based Electronics, Chap. 8, pp. 231–263 (2018). https://doi.org/10.1002/9783527804894.ch8

  3. Lee, J.; Jang, S.; Lee, J.; Jung, K.-D.; Park, M.-S.; Yoo, M.-H.; Shin, H.: Extraction of electron band mobility in amorphous silicon thin-film transistors. Jpn. J. Appl. Phys. 51, 21402 (2012)

    Article  Google Scholar 

  4. Labed, M.; Sengouga, N.: Simulation of the influence of the gate dielectric on amorphous indium-gallium-zinc oxide thin-film transistor reliability. J. Comput. Electron. 18, 509–518 (2019)

    Article  Google Scholar 

  5. Sanal, K.C.; Majeesh, M.; Jayaraj, M.K.: Growth of IGZO thin films and fabrication of transparent thin film transistor by RF magnetron sputtering. In: Nanostructured Thin Films VI, p. 881814. International Society for Optics and Photonics (2013)

  6. Fung, T.-C.: Amorphous In–Ga–Zn–O thin film transistor for future optoelectronics. Dissertation, University of Michigan (2010)

  7. Kwon, J.Y.; Son, K.S.; Jung, J.S.; Kim, T.S.; Ryu, M.K.; Park, K.B.; Kim, J.W.; Lee, Y.G.; Kim, C.J.; Kim, S.I.: 4 inch QVGA AMOLED display driven by GaInZnO TFT. In: 14th International Display Workshops, IDW’07 (2007)

  8. Jeong, J.K.; Jeong, J.H.; Choi, J.H.; Im, J.S.; Kim, S.H.; Yang, H.W.; Kang, K.N.; Kim, K.S.; Ahn, T.K.; Chung, H.: 3.1: Distinguished paper: 12.1‐Inch WXGA AMOLED display driven by Indium‐Gallium‐Zinc oxide TFTs array. In: SID Symposium Digest of Technical Papers, pp. 1–4. Wiley Online Library (2008)

  9. Kandpal, K.; Gupta, N.: Investigations on high-κ dielectrics for low threshold voltage and low leakage zinc oxide thin-film transistor, using material selection methodologies. J. Mater. Sci. Mater. Electron. 27, 5972–5981 (2016)

    Article  Google Scholar 

  10. Jankovic, N.D.; Brajovic, V.: Vth compensated AMOLED pixel employing dual-gate TFT driver. Electron. Lett. 47, 456–457 (2011)

    Article  Google Scholar 

  11. Sasaoka, T.; Sekiya, M.; Yumoto, A.; Yamada, J.; Hirano, T.; Iwase, Y.; Yamada, T.; Ishibashi, T.; Mori, T.; Asano, M.: 24.4 L: late-news paper: a 13.0‐inch AM‐OLED display with top emitting structure and adaptive current mode programmed pixel circuit (TAC). In: SID Symposium Digest of Technical Papers, pp. 384–387. Wiley Online Library (2001)

  12. Lee, J.-H.; Nam, W.-J.; Jung, S.-H.; Han, M.-K.: A new current scaling pixel circuit for AMOLED. IEEE Electron Device Lett. 25, 280–282 (2004)

    Article  Google Scholar 

  13. Bagheri, M.; Cheng, X.; Zhang, J.; Lee, S.; Ashtiani, S.; Nathan, A.: Threshold voltage compensation error in voltage programmed AMOLED displays. J. Disp. Technol. 12, 658–664 (2016)

    Article  Google Scholar 

  14. Chen, C.; Kanicki, J.; Abe, K.; Kumomi, H.: P‐14: AM‐OLED pixel circuits based on a‐InGaZnO thin film transistors. In: SID Symposium Digest of Technical Papers, pp. 1128–1131. Wiley Online Library (2009)

  15. Sodhani, A.; Kandpal, K.: Design of threshold voltage insensitive pixel driver circuitry using a-IGZO TFT for AMOLED displays. Microelectronics J. 101, 104819 (2020)

  16. Kim, D.; Kim, Y.; Lee, S.; Kang, M.S.; Kim, D.H.; Lee, H.: High resolution a-IGZO TFT pixel circuit for compensating threshold voltage shifts and OLED degradations. IEEE J. Electron Devices Soc. 5, 372–377 (2017)

    Article  Google Scholar 

  17. Singh, A.; Kandpal, K.: Design of a threshold voltage insensitive 3T1C pixel circuit using a-IGZO TFT for AMOLED displays. In: 2020 24th International Symposium on VLSI Design and Test (VDAT), pp. 1–5. IEEE (2020)

  18. Kandpal, K.; Gupta, N.: Adaptation of a compact SPICE level 3 model for oxide thin-film transistors. J. Comput. Electron. 18, 1037–1044 (2019)

    Article  Google Scholar 

  19. Qian, L.X.; Lai, P.T.; Tang, W.M.: Effects of Ta incorporation in La2O3 gate dielectric of InGaZnO thin-film transistor. Appl. Phys. Lett. 104, 123505 (2014)

    Article  Google Scholar 

  20. Lee, J.-M.; Cho, I.-T.; Lee, J.-H.; Kwon, H.-I.: Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors. Appl. Phys. Lett. 93, 93504 (2008)

    Article  Google Scholar 

  21. Lee, J.P.; Hwang, J.Y.; Bae, B.S.: Pixel circuit with threshold voltage compensation using a-IGZO TFT for AMOLED. J. Semicond. Technol. Sci. 14, 594–600 (2014)

    Article  Google Scholar 

  22. Lin, C.-L.; Chen, F.-H.; Hung, C.-C.; Chen, P.-S.; Deng, M.-Y.; Lu, C.-M.; Huang, T.-H.: New a-IGZO pixel circuit composed of three transistors and one capacitor for use in high-speed-scan AMOLED displays. J. Disp. Technol. 11, 1031–1034 (2015)

    Article  Google Scholar 

  23. Singh, A.; Goswami, M.; Kandpal, K.: Design of a voltage-programmed, VTH compensating pixel circuit for amoled displays using diode connected a-IGZO TFT. IET Circuits Devices Syst. 14, 876–880 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavindra Kandpal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sodhani, A., Goswami, R. & Kandpal, K. Design of Pixel Circuit Using a-IGZO TFTs to Enhance Uniformity of AMOLED Displays by Threshold Voltage Compensation. Arab J Sci Eng 46, 9663–9672 (2021). https://doi.org/10.1007/s13369-021-05457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05457-2

Keywords

Navigation