Skip to main content
Log in

Groundwater Contamination by Hazardous Wastes

  • Review-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the global race of development, a huge amount of wastes having different characteristics and potential for environmental pollution are generated from various activities such as manufacturing, mining, processing, treatments, agriculture, etc. Considering the pollution threats to all three components of the environment (air, water and soil), it is highly essential to assess the levels of pollution associated with these wastes so that suitable remedial measures can be adopted. When untreated hazardous wastes are disposed on the ground or in the landfills, there is always a possibility of groundwater contamination due to the transport of leachate generated from the disposed wastes. In order to predict the groundwater pollution levels at different locations of the aquifers and at different times, several models suited to the characteristics of the concerned hazardous wastes and aquifers have been widely reported in literature. This paper presents a comprehensive literature review on groundwater contamination by hazardous wastes and its different aspects, including the types of hazardous contaminants, aquifers, contaminant transport mechanisms, contaminant transport modeling, software available for modeling contaminant transport in aquifers, groundwater sustainability and a case study on groundwater quality prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. EPA: Hazardous Waste Listings. Hazard Waste List A User-Friendly Ref Doc 1–118 (2012)

  2. Bodrud-Doza, M.; Islam, A.R.M.T.; Ahmed, F.; Das, S.; Saha, N.; Rahman, M.S.: Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Sci. 30, 19–40 (2016). https://doi.org/10.1016/j.wsj.2016.05.001

    Article  Google Scholar 

  3. Franklin, R.E.; Quisenberry, V.L.; Gossett, B.J.; Murdock, E.C.: Selection of herbicide alternatives based on probable leaching to groundwater. Weed Technol. 8, 6–16 (1994)

    Article  Google Scholar 

  4. Herrero-Hernández, E.; Pose-Juan, E.; Álvarez-Martín, A.; Andrades, M.S.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J.: Pesticides and degradation products in groundwaters from a vineyard region: optimization of a multiresidue method based on SPE and GC-MS. J. Sep. Sci. 35, 3492–3500 (2012). https://doi.org/10.1002/jssc.201200380

    Article  Google Scholar 

  5. Nawab, J.; Wang, X.; Khan, S.; Tang, Y.T.; Rahman, Z.; Ali, A.; Dotel, J.; Li, G.: New insights into the bioaccumulation of persistent organic pollutants in remote alpine lakes located in Himalayas, Pakistan. Environ. Pollut. (2020). https://doi.org/10.1016/j.envpol.2020.114952

    Article  Google Scholar 

  6. Ríos, J.M.; Lana, N.B.; Ciocco, N.F.; Covaci, A.; Barrera-Oro, E.; Moreira, E.; Altamirano, J.C.: Implications of biological factors on accumulation of persistent organic pollutants in Antarctic notothenioid fish. Ecotoxicol. Environ. Saf. 145, 630–639 (2017). https://doi.org/10.1016/j.ecoenv.2017.08.009

    Article  Google Scholar 

  7. Abuabdou, S.M.A.; Ahmad, W.; Aun, N.C.; Bashir, M.J.K.: A review of anaerobic membrane bioreactors (AnMBR) for the treatment of highly contaminated landfill leachate and biogas production: effectiveness, limitations and future perspectives. J. Clean. Prod. 255, 120215 (2020). https://doi.org/10.1016/j.jclepro.2020.120215

    Article  Google Scholar 

  8. Chen, C.-S.; Tu, C.; Chen, S.-J.; Chen, C.: Simulation of groundwater contaminant transport at a decommissioned landfill site—a case study, Tainan City, Taiwan. Int. J. Environ. Res. Public Health 13, 467 (2016). https://doi.org/10.3390/ijerph13050467

    Article  Google Scholar 

  9. Li, W.; Achal, V.: Environmental and health impacts due to e-waste disposal in China—a review. Sci. Total Environ. 737, 139745 (2020). https://doi.org/10.1016/j.scitotenv.2020.139745

    Article  Google Scholar 

  10. Wu, C.; Zhu, H.; Luo, Y.; Teng, Y.; Song, J.; Chen, M.: Levels and potential health hazards of PCBs in shallow groundwater of an e-waste recycling area, China. Environ. Earth Sci. 74, 4431–4438 (2015). https://doi.org/10.1007/s12665-015-4427-2

    Article  Google Scholar 

  11. Ismail, H.; Hanafiah, M.M.: A review of sustainable e-waste generation and management: present and future perspectives. J. Environ. Manag. 264, 110495 (2020). https://doi.org/10.1016/j.jenvman.2020.110495

    Article  Google Scholar 

  12. Beiyuan, J.; Tsang, D.C.W.; Yip, A.C.K.; Zhang, W.; Ok, Y.S.; Li, X.-D.: Risk mitigation by waste-based permeable reactive barriers for groundwater pollution control at e-waste recycling sites. Environ. Geochem. Health 39, 75–88 (2017). https://doi.org/10.1007/s10653-016-9808-2

    Article  Google Scholar 

  13. Han, W.; Gao, G.; Geng, J.; Li, Y.; Wang, Y.: Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China. Chemosphere 197, 325–335 (2018). https://doi.org/10.1016/j.chemosphere.2018.01.043

    Article  Google Scholar 

  14. Sulaymon, A.H.; Gzar, H.A.: Experimental investigation and numerical modeling of light nonaqueous phase liquid dissolution and transport in a saturated zone of the soil. J. Hazard Mater. 186, 1601–1614 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.035

    Article  Google Scholar 

  15. Pasha, A.Y.; Hu, L.; Meegoda, J.N.: Numerical simulations of a light nonaqueous phase liquid (LNAPL) movement in variably saturated soils with capillary hysteresis. Can. Geotech. J. 51, 1046–1062 (2014). https://doi.org/10.1139/cgj-2012-0165

    Article  Google Scholar 

  16. Jeong, J.; Charbeneau, R.J.: An analytical model for predicting LNAPL distribution and recovery from multi-layered soils. J. Contam. Hydrol. 156, 52–61 (2014). https://doi.org/10.1016/j.jconhyd.2013.09.008

    Article  Google Scholar 

  17. Huang, J.; Goltz, M.N.: Semianalytical solutions for transport in aquifer and fractured clay matrix system. Water Resour. Res. 51, 7218–7237 (2015). https://doi.org/10.1002/2014WR016073

    Article  Google Scholar 

  18. Stoppiello, M.G.; Lofrano, G.; Carotenuto, M.; Viccione, G.; Guarnaccia, C.; Cascini, L.: A comparative assessment of analytical fate and transport models of organic contaminants in unsaturated soils. Sustainability 12, 2949 (2020). https://doi.org/10.3390/su12072949

    Article  Google Scholar 

  19. Lee, K.Y.: Modeling long-term transport of contaminants resulting from dissolution of a coal tar pool in saturated porous media. J. Environ. Eng. 130, 1507–1513 (2004). https://doi.org/10.1061/(ASCE)0733-9372(2004)130:12(1507)

    Article  Google Scholar 

  20. Birla, S.; Yadav, P.K.; Mahalawat, P.; Händel, F.; Chahar, B.R.; Liedl, R.: Influence of recharge rates on steady-state plume lengths. J. Contam. Hydrol. 235, 103709 (2020). https://doi.org/10.1016/j.jconhyd.2020.103709

    Article  Google Scholar 

  21. Şengör, S.S.; Ünlü, K.: Modeling contaminant transport and remediation at an acrylonitrile spill site in Turkey. J. Contam. Hydrol. 150, 77–92 (2013). https://doi.org/10.1016/j.jconhyd.2013.02.010

    Article  Google Scholar 

  22. Yin, Y.; Sykes, J.F.; Normani, S.D.: Impacts of spatial and temporal recharge on field-scale contaminant transport model calibration. J. Hydrol. 527, 77–87 (2015). https://doi.org/10.1016/j.jhydrol.2015.04.040

    Article  Google Scholar 

  23. Piscopo, A.N.; Neupauer, R.M.; Kasprzyk, J.R.: Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ. J. Contam. Hydrol. 190, 29–43 (2016). https://doi.org/10.1016/j.jconhyd.2016.03.005

    Article  Google Scholar 

  24. Guo, Z.; Fogg, G.E.; Brusseau, M.L.; LaBolle, E.M.; Lopez, J.: Modeling groundwater contaminant transport in the presence of large heterogeneity: a case study comparing MT3D and RWhet. Hydrogeol. J. 27, 1363–1371 (2019). https://doi.org/10.1007/s10040-019-01938-9

    Article  Google Scholar 

  25. Xie, H.; Yan, H.; Feng, S.; Wang, Q.; Chen, P.: An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation, diffusion, and degradation. Environ. Sci. Pollut. Res. 23, 19362–19375 (2016). https://doi.org/10.1007/s11356-016-7147-6

    Article  Google Scholar 

  26. Feng, S.J.; Bai, Z.B.; Zheng, Q.T.; Lu, S.F.; Zhang, X.L.: A finite-volume numerical model for temporal and spatial variability of methane oxidation in landfill covers. Comput. Geotech. 122, 103510 (2020). https://doi.org/10.1016/j.compgeo.2020.103510

    Article  Google Scholar 

  27. Ciftci, E.; Avci, C.B.; Borekci, O.S.; Sahin, A.U.: Assessment of advective–dispersive contaminant transport in heterogeneous aquifers using a meshless method. Environ. Earth Sci. 67, 2399–2409 (2012). https://doi.org/10.1007/s12665-012-1686-z

    Article  Google Scholar 

  28. Ghoraba, S.M.; Zyedan, B.A.; Rashwan, I.M.H.: Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt. Alex. Eng. J. 52, 197–207 (2013). https://doi.org/10.1016/j.aej.2012.12.007

    Article  Google Scholar 

  29. Rodriguez-Galiano, V.; Mendes, M.P.; Garcia-Soldado, M.J.; Chica-Olmo, M.; Ribeiro, L.: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Sci. Total. Environ. 476–477, 189–206 (2014). https://doi.org/10.1016/j.scitotenv.2014.01.001

    Article  Google Scholar 

  30. Jean-Baptiste, J.; Le Gal La Salle, C.; Verdoux, P.: Use of mixing models to explain groundwater quality time and space variation in a narrowed fluctuating alluvial aquifer. Appl. Geochem. 121, 104700 (2020). https://doi.org/10.1016/j.apgeochem.2020.104700

    Article  Google Scholar 

  31. Chen, J.S.; Liu, C.W.; Liang, C.P.; Lai, K.H.: Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition. J. Hydrol. 456–457, 101–109 (2012). https://doi.org/10.1016/j.jhydrol.2012.06.017

    Article  Google Scholar 

  32. Nair, R.N.; Sunny, F.; Manikandan, S.T.: Modelling of decay chain transport in groundwater from uranium tailings ponds. Appl. Math. Model. 34, 2300–2311 (2010). https://doi.org/10.1016/j.apm.2009.10.038

    Article  Google Scholar 

  33. Chopra, M.; Rastogi, R.; Kumar, A.V.; Sunny, F.; Nair, R.N.: Response surface method coupled with first-order reliability method based methodology for groundwater flow and contaminant transport model for the uranium tailings pond site. Environ. Model. Assess. 18, 439–450 (2013). https://doi.org/10.1007/s10666-012-9352-0

    Article  Google Scholar 

  34. Chakraborty, R.; Ghosh, A.: Analysis of 1D contaminant migration through saturated soil media underlying aquifer using FDM. J. Hazard. Toxic Radioact. Waste 16, 229–242 (2012). https://doi.org/10.1061/(asce)hz.2153-5515.0000125

    Article  Google Scholar 

  35. Bai, B.; Li, H.; Xu, T.; Chen, X.: Analytical solutions for contaminant transport in a semi-infinite porous medium using the source function method. Comput. Geotech. 69, 114–123 (2015). https://doi.org/10.1016/j.compgeo.2015.05.002

    Article  Google Scholar 

  36. Das, P.; Begam, S.; Singh, M.K.: Mathematical modeling of groundwater contamination with varying velocity field. J. Hydrol. Hydromech. 65, 192–204 (2017). https://doi.org/10.1515/johh-2017-0013

    Article  Google Scholar 

  37. Kheirabadi, M.; Niksokhan, M.H.; Omidvar, B.: Colloid-associated groundwater contaminant transport in homogeneous saturated porous media: mathematical and numerical modeling. Environ. Model. Assess. 22, 79–90 (2017). https://doi.org/10.1007/s10666-016-9518-2

    Article  Google Scholar 

  38. Kocabas, I.; Bulbul, M.: Modeling solute/contaminant transport in heterogeneous aquifers. Environ. Sci. Pollut. Res. 22, 3298–3313 (2015). https://doi.org/10.1007/s11356-014-3827-2

    Article  Google Scholar 

  39. Fiori, A.; Zarlenga, A.; Bellin, A.; Cvetkovic, V.; Dagan, G.: Groundwater contaminant transport: prediction under uncertainty, with application to the MADE transport experiment. Front. Environ. Sci. 7, 1–16 (2019). https://doi.org/10.3389/fenvs.2019.00079

    Article  Google Scholar 

  40. Nan, T.; Wu, J.; Guadagnini, A.; Zeng, X.; Liang, X.: Random walk evaluation of Green’s functions for groundwater flow in heterogeneous aquifers. J. Hydrol. 588, 125029 (2020). https://doi.org/10.1016/j.jhydrol.2020.125029

    Article  Google Scholar 

  41. Banaei, S.M.A.; Javid, A.H.; Hassani, A.H.: Numerical simulation of groundwater contaminant transport in porous media. Int. J. Environ. Sci. Technol. (2020). https://doi.org/10.1007/s13762-020-02825-7

    Article  Google Scholar 

  42. Yan, J.M.; Vairavamoorthy, K.; Gorantiwar, S.D.: Contaminant transport model for unsaturated soil using fuzzy approach. J. Environ. Eng. 132, 1489–1497 (2006). https://doi.org/10.1061/(asce)0733-9372(2006)132:11(1489)

    Article  Google Scholar 

  43. Dvory, N.Z.; Kuznetsov, M.; Livshitz, Y.; Gasser, G.; Pankratov, I.; Lev, O.; Adar, E.; Yakirevich, A.: Modeling sewage leakage and transport in carbonate aquifer using carbamazepine as an indicator. Water Res. 128, 157–170 (2018). https://doi.org/10.1016/j.watres.2017.10.044

    Article  Google Scholar 

  44. Fomin, S.; Chugunov, V.; Hashida, T.: Simulation of contaminant transport in a fractured porous aquifer. J. Fluids Eng. Trans. ASME 129, 1157–1163 (2007). https://doi.org/10.1115/1.2754327

    Article  MATH  Google Scholar 

  45. Fan, X.; Sun, S.; Wei, W.; Kou, J.: Numerical simulation of pollutant transport in fractured Vuggy porous karstic aquifers. J. Appl. .Math 2011, 1–41 (2011). https://doi.org/10.1155/2011/498098

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhao, Y.; Zhang, Y.K.; Liang, X.: Analytical solutions of three-dimensional groundwater flow to a well in a leaky sloping fault-zone aquifer. J. Hydrol. 539, 204–213 (2016). https://doi.org/10.1016/j.jhydrol.2016.05.029

    Article  Google Scholar 

  47. Morales, T.; Angulo, B.; Uriarte, J.A.; Olazar, M.; Arandes, J.M.; Antiguedad, I.: Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management. J. Hydrol. 547, 269–279 (2017). https://doi.org/10.1016/j.jhydrol.2017.02.009

    Article  Google Scholar 

  48. Zhu, Q.; Wen, Z.; Jakada, H.: A new solution to transient single-well push–pull test with low-permeability non-Darcian leakage effects. J. Contam. Hydrol. 234, 103689 (2020). https://doi.org/10.1016/j.jconhyd.2020.103689

    Article  Google Scholar 

  49. Chen, Y.; Yeh, H.; Chang, K.: A mathematical solution and analysis of contaminant transport in a radial two-zone confined aquifer. J. Contam. Hydrol. 138–139, 75–82 (2012). https://doi.org/10.1016/j.jconhyd.2012.06.006

    Article  Google Scholar 

  50. Hsieh, P.F.; Der, Y.H.: Semi-analytical and approximate solutions for contaminant transport from an injection well in a two-zone confined aquifer system. J. Hydrol. 519, 1171–1176 (2014). https://doi.org/10.1016/j.jhydrol.2014.08.046

    Article  Google Scholar 

  51. Lin, Y.C.; Yang, S.Y.; Fen, C.S.; Der, Y.H.: A general analytical model for pumping tests in radial finite two-zone confined aquifers with Robin-type outer boundary. J. Hydrol. 540, 1162–1175 (2016). https://doi.org/10.1016/j.jhydrol.2016.07.028

    Article  Google Scholar 

  52. El-Rawy, M.; Batelaan, O.; Buis, K.; Anibas, C.; Mohammed, G.; Zijl, W.; Salem, A.: Analytical and numerical groundwater flow solutions for the FEMME-modeling environment. Hydrology (2020). https://doi.org/10.3390/HYDROLOGY7020027

    Article  Google Scholar 

  53. Li, X.; Wen, Z.; Zhu, Q.; Jakada, H.: A mobile-immobile model for reactive solute transport in a radial two-zone confined aquifer. J. Hydrol. 580, 124347 (2020). https://doi.org/10.1016/j.jhydrol.2019.124347

    Article  Google Scholar 

  54. Liu, X.; Zhang, Q.; Cheng, T.: Accelerating contaminant transport simulation in MT3DMS Using JASMIN-based parallel computing. Water 12, 1480 (2020). https://doi.org/10.3390/w12051480

    Article  Google Scholar 

  55. Spitz, K.; Moreno, J.: A Practical Guide to Groundwater and Solute Transport Modeling. Wiley, New York (1996)

    Google Scholar 

  56. Mieszkowski, R.: Diffusion of lead ions trough the Poznań Clay (Neogene) and through glacial clay. Geol. Q. 47, 111–118 (2003). https://doi.org/10.7306/gq.v47i1.7301

    Article  Google Scholar 

  57. Pickens, J.F.; Grisak, G.E.: Scale-dependent dispersion in a stratified granular aquifer. Water Resour. Res. 17, 1191–1211 (1981). https://doi.org/10.1029/WR017i004p01191

    Article  Google Scholar 

  58. Rabideau, A.; Khandelwal, A.: Nonequilibrium sorption in soil/bentonite barriers. J. Environ. .Eng 124, 329–335 (1998). https://doi.org/10.1061/(ASCE)0733-9372(1998)124:4(329)

    Article  Google Scholar 

  59. Goyette, M.L.; Lewis, B.-A.G.: K d in screening-level ground-water contaminant-transport model. J. Environ. Eng. 121, 537–541 (1995). https://doi.org/10.1061/(ASCE)0733-9372(1995)121:7(537)

    Article  Google Scholar 

  60. Maraqa, M.A.; Wallace, R.B.; Voice, T.C.: Effect of water saturation on retardation of ground-water contaminants. J. Environ. Eng. 125, 697–704 (1999). https://doi.org/10.1061/(ASCE)0733-9372(1999)125:8(697)

    Article  Google Scholar 

  61. Connor, J.A.; Bowers, R.L.; Paquette, S.M.; Newell, C.J.: Soil attenuation model for derivation of risk-based soil remediation standards. Groundwater Services, Inc., Houston, Texas (1997)

    Google Scholar 

  62. Ganguly, C.; Matsumoto, M.R.; Rabideau, A.J.; Van, B.J.E.: Metal ion leaching from contaminated soils: model development. J. Environ. Eng. 124, 278–287 (1998). https://doi.org/10.1061/(ASCE)0733-9372(1998)124:3(278)

    Article  Google Scholar 

  63. Ganguly, C.; Matsumoto, M.R.; Rabideau, A.J.; Van, B.J.E.: Metal ion leaching from contaminated soils: model calibration and application. J. Environ. .Eng. 124, 1150–1158 (1998). https://doi.org/10.1061/(ASCE)0733-9372(1998)124:12(1150)

    Article  Google Scholar 

  64. Li, L.Y.; Wu, G.: Numerical simulation of transport of four heavy metals in kaolinite clay. J. Environ. Eng. 125, 314–324 (1999). https://doi.org/10.1061/(ASCE)0733-9372(1999)125:4(314)

    Article  Google Scholar 

  65. De-Josselin-De-Jong, G.: Longitudinal and transverse diffusion in granular deposits. Trans. Am. Geophys. Union 39, 67 (1958). https://doi.org/10.1029/TR039i001p00067

    Article  Google Scholar 

  66. Ogata, A.; Banks, R.B.: A solution of the differential equation of longitudinal dispersion in porous media. Geol Surv (US); Prof Pap A1–A7 (1961)

  67. Sayre, W.W.: Dispersion of mass in open-channel flow. US Geological Survey. Open-File Report 67–192 (1967). https://doi.org/10.3133/ofr67192

  68. Baetsle, L.H.: Migration of Radionuclides in porous media. In: Duhamel, A.M.F. (Ed.) Health Physics, pp. 707–730. Pergamon Press, Elmsford, New York (1969)

    Google Scholar 

  69. Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)

    MATH  Google Scholar 

  70. Domenico, P.A.: An analytical model for multidimensional transport of a decaying contaminant species. J. Hydrol. 91, 49–58 (1987). https://doi.org/10.1016/0022-1694(87)90127-2

    Article  Google Scholar 

  71. Runkel, R.L.: Solution of the advection–dispersion equation: continuous load of finite duration. J. Environ. Eng. 122, 830–832 (1996). https://doi.org/10.1061/(ASCE)0733-9372(1996)122:9(830)

    Article  Google Scholar 

  72. Hossain, M.A.; Yonge, D.R.: Linear finite-element modeling of contaminant transport in ground water. J. Environ. Eng. 123, 1126–1135 (1997). https://doi.org/10.1061/(asce)0733-9372(1997)123:11(1126)

    Article  Google Scholar 

  73. Chen, J.S.; Ho, Y.C.; Liang, C.P.; Wang, S.W.; Liu, C.W.: Semi-analytical model for coupled multispecies advective–dispersive transport subject to rate-limited sorption. J. Hydrol. 579, 124164 (2019). https://doi.org/10.1016/j.jhydrol.2019.124164

    Article  Google Scholar 

  74. Cunningham, J.A.; Mendoza-Sanchez, I.: Equivalence of two models for biodegradation during contaminant transport in groundwater. Water Resour. Res. 42, 1–10 (2006). https://doi.org/10.1029/2005WR004205

    Article  Google Scholar 

  75. Zoghbi, C.; Basha, H.: Simple transport models for karst systems. J. Hydrol. 588, 125046 (2020). https://doi.org/10.1016/j.jhydrol.2020.125046

    Article  Google Scholar 

  76. He, Z.; Wu, W.; Wang, S.S.Y.: Integrated two-dimensional surface and three-dimensional subsurface contaminant transport model considering soil erosion and sorption. J. Hydraul. Eng. 135, 1028–1040 (2009). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000116

    Article  Google Scholar 

  77. Paladino, O.; Moranda, A.; Massabò, M.; Robbins, G.A.: Analytical solutions of three-dimensional contaminant transport models with exponential source decay. Groundwater 56, 96–108 (2018). https://doi.org/10.1111/gwat.12564

    Article  Google Scholar 

  78. Park, E.: Analytical modeling of contaminant transport and horizontal well hydraulics. Doctoral dissertation, Texas A&M University (2002). http://hdl.handle.net/1969.1/17

  79. Hekmatzadeh, A.; Keshavarzi, H.; Talebbeydokhti, N.; Torabi Haghighi, A.: Lattice Boltzmann solution of advection-dominated mass transport problem: a comparison. Sci. Iran 27, 625–638 (2020). https://doi.org/10.24200/sci.2018.5616.1376

    Article  Google Scholar 

  80. Schumer, R.; Benson, D.A.; Meerschaert, M.M.; Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 1–12 (2003). https://doi.org/10.1029/2003WR002141

    Article  Google Scholar 

  81. Craig, J.R.; Heidlauf, T.: Coordinate mapping of analytical contaminant transport solutions to non-uniform flow fields. Adv. Water Resour. 32, 353–360 (2009). https://doi.org/10.1016/j.advwatres.2008.11.013

    Article  Google Scholar 

  82. Deng, B.; Li, J.; Zhang, B.; Li, N.: Integral transform solution for solute transport in multi-layered porous media with the implicit treatment of the interface conditions and arbitrary boundary conditions. J. Hydrol. 517, 566–573 (2014). https://doi.org/10.1016/j.jhydrol.2014.05.072

    Article  Google Scholar 

  83. Huang, C.-S.; Yang, S.-Y.; Yeh, H.-D.: Groundwater flow to a pumping well in a sloping fault zone unconfined aquifer. Water Resour. Res. 50, 4079–4094 (2014). https://doi.org/10.1002/2013WR014212

    Article  Google Scholar 

  84. van Genuchten, M.T.; Alves, W.J.: Analytical solutions of the one-dimensional convective–dispersive solute transport equation. Tech Bull—United States Dep Agric (1982)

  85. Gerke, H.H.; van Genuchten, M.T.: A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res. 29, 305–319 (1993). https://doi.org/10.1029/92WR02339

    Article  Google Scholar 

  86. van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980). https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  87. Savović, S.; Djordjevich, A.: Finite difference solution of the one-dimensional advection–diffusion equation with variable coefficients in semi-infinite media. Int. J. Heat Mass Transf. 55, 4291–4294 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.073

    Article  Google Scholar 

  88. Bauer, P.; Attinger, S.; Kinzelbach, W.: Transport of a decay chain in homogenous porous media: analytical solutions. J. Contam. Hydrol. 49, 217–239 (2001). https://doi.org/10.1016/s0169-7722(00)00195-9

    Article  Google Scholar 

  89. Singh, M.K.; Singh, V.P.; Das, P.: Mathematical modeling for solute transport in aquifer. J. Hydroinf. 18, 481–499 (2016). https://doi.org/10.2166/hydro.2015.034

    Article  Google Scholar 

  90. Pan, C.; Changfu, W.: Numerical procedure for simulating the two-phase flow in unsaturated soils with hydraulic hysteresis. Int. J. Geomech. 16, 4015030 (2016). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000505

    Article  Google Scholar 

  91. Guyonnet, D.; Côme, B.; Perrochet, P.; Parriaux, A.: Comparing two methods for addressing uncertainty in risk assessments. J. Environ. Eng. 125, 660–666 (1999). https://doi.org/10.1061/(ASCE)0733-9372(1999)125:7(660)

    Article  Google Scholar 

  92. Assumaning, G.A.; Chang, S.-Y.: Application of sequential data-assimilation techniques in groundwater contaminant transport modeling. J. Environ. Eng. 142, 04015073 (2016). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001034

    Article  Google Scholar 

  93. Chang, S.-Y.; Chowhan, T.; Latif, S.: State and parameter estimation with an SIR particle filter in a three-dimensional groundwater pollutant transport model. J. Environ. Eng. 138, 1114–1121 (2012). https://doi.org/10.1061/(asce)ee.1943-7870.0000584

    Article  Google Scholar 

  94. Bandilla, K.W.; Rabideau, A.J.; Janković, I.: A parallel mesh-free contaminant transport model based on the analytic element and streamline methods. Adv. Water. Resour. 32, 1143–1153 (2009). https://doi.org/10.1016/j.advwatres.2008.08.009

    Article  Google Scholar 

  95. Dhawan, S.; Bhowmik, S.K.; Kumar, S.: Galerkin-least square B-spline approach toward advection–diffusion equation. Appl. Math. Comput. 261, 128–140 (2015). https://doi.org/10.1016/j.amc.2015.03.092

    Article  MathSciNet  MATH  Google Scholar 

  96. Onyari, E.; Taigbenu, A.: Inverse Green element evaluation of source strength and concentration in groundwater contaminant transport. J. Hydroinf. 19, 81–96 (2017). https://doi.org/10.2166/hydro.2016.028

    Article  Google Scholar 

  97. Jiao, J.; Zhang, Y.: Direct method of hydraulic conductivity structure identification for subsurface transport modeling. J. Hydrol. Eng. 21, 1–14 (2016). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001410

    Article  Google Scholar 

  98. Samad, M.S.A.; Varghese, G.K.; Alappat, B.J.: Fitness evaluation while using contaminant transport models for environmental forensic investigation. Energy Proc. 119, 792–800 (2017). https://doi.org/10.1016/j.egypro.2017.07.112

    Article  Google Scholar 

  99. McDonald, M.G; Harbaugh, A.W: A modular three-dimensional finite-difference groundwater flow model. US Geological Survey. Open-File Report 83–875 (1984). https://doi.org/10.3133/ofr83875

  100. McDonald, M.G; Harbaugh, A.W: A modular three-dimensional finite-difference groundwater flow model. US GPO. Techniques of Water-Resource Investigations 06-A1 (1988). https://doi.org/10.3133/twri06A1

  101. Harbough, W.; Mcdonald, M.G.: Programmer ’s Documentation for MODFLOW-96 , an update to the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model. Vol.Open-FileReport 96–485. US Geological Survey, Reston, Virginia (1996)

  102. Menezes, G.B.; Inyang, H.I.: GIS-based contaminant transport model for heterogeneous hydrogeological settings. J. Environ. Inf. 14, 11–24 (2009). https://doi.org/10.3808/jei.200900149

    Article  Google Scholar 

  103. Nevin, J.P.; Connor, J.A.; Newell, C.J.; Gustafson, J.B.; Lyons, K.A.: FATE 5: a natural attenuation calibration tool for groundwater fate and transport modeling. In: NGWA Petroleum Hydrocarbons Conference, Houston, TX (1997)

  104. Peng, C.H.; Feng, S.J.; Zheng, Q.T.; Ding, X.H.; Chen, Z.L.; Chen, H.X.: A two-dimensional analytical solution for organic contaminant diffusion through a composite geomembrane cut-off wall and an aquifer. Comput. Geotech. 119, 103361 (2020). https://doi.org/10.1016/j.compgeo.2019.103361

    Article  Google Scholar 

  105. Ding, X.H.; Feng, S.J.; Zheng, Q.T.; Peng, C.H.: A two-dimensional analytical model for organic contaminants transport in a transition layer-cutoff wall-aquifer system. Comput. Geotech. 128, 103816 (2020). https://doi.org/10.1016/j.compgeo.2020.103816

    Article  Google Scholar 

  106. Zhang, Y.; LaBolle, E.; Reeves, D.M.; Russell, C.: Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media. Nevada University, Reno (2012)

    Book  Google Scholar 

  107. Ingham, J.; Dunn, I.J.; Heinzle, E.; Prenosil, J.E.: Chemical Engineering Dynamics: Modelling with PC Simulation. Wiley, New York (2008)

    Google Scholar 

  108. Moqbel, S.; Abu-El-Sha’r, W.: Modeling groundwater flow and solute transport at Azraq basin using Parflow and Slim-fast. Jordan J. Civ. Eng. 12, 263–278 (2018)

    Google Scholar 

  109. Bedaso, Z.K.; Wu, S.-Y.; Johnson, A.N.; McTighe, C.: Assessing groundwater sustainability under changing climate using isotopic tracers and climate modelling, southwest Ohio, USA. Hydrol. Sci. J. 64, 798–807 (2019). https://doi.org/10.1080/02626667.2019.1606429

    Article  Google Scholar 

  110. Watson, A.; Eilers, A.; Miller, J.A.: Recharge estimation using CMB and environmental isotopes in the Verlorenvlei estuarine system, South Africa and implications for groundwater sustainability in a semi-arid agricultural region. Water 12, 1362 (2020). https://doi.org/10.3390/w12051362

    Article  Google Scholar 

  111. He, X.; Feng, K.; Li, X.; Craft, A.B.; Wada, Y.; Burek, P.; Wood, E.F.; Sheffield, J.: Solar and wind energy enhances drought resilience and groundwater sustainability. Nat. Commun. 10, 4893 (2019). https://doi.org/10.1038/s41467-019-12810-5

    Article  Google Scholar 

  112. Ahmed, K.; Shahid, S.; Demirel, M.C.; Nawaz, N.; Khan, N.: The changing characteristics of groundwater sustainability in Pakistan from 2002 to 2016. Hydrogeol. J. 27, 2485–2496 (2019). https://doi.org/10.1007/s10040-019-02023-x

    Article  Google Scholar 

  113. Taylor, R.G.; Favreau, G.; Scanlon, B.R.; Villholth, K.G.: Topical Collection: determining groundwater sustainability from long-term piezometry in Sub-Saharan Africa. Hydrogeol. J. 27, 443–446 (2019). https://doi.org/10.1007/s10040-019-01946-9

    Article  Google Scholar 

  114. Singh, A.P.; Bhakar, P.: Development of groundwater sustainability index: a case study of western arid region of Rajasthan, India. Environ. Dev. Sustain. (2020). https://doi.org/10.1007/s10668-020-00654-9

    Article  Google Scholar 

  115. Mautner, M.R.L.; Foglia, L.; Herrera, G.S.; Galán, R.; Herman, J.D.: Urban growth and groundwater sustainability: evaluating spatially distributed recharge alternatives in the Mexico City Metropolitan Area. J. Hydrol. 586, 124909 (2020). https://doi.org/10.1016/j.jhydrol.2020.124909

    Article  Google Scholar 

  116. Wang, S.; Liu, H.; Yu, Y.; Zhao, W.; Yang, Q.; Liu, J.: Evaluation of groundwater sustainability in the arid Hexi Corridor of Northwestern China, using GRACE, GLDAS and measured groundwater data products. Sci. Total Environ. 705, 135829 (2020). https://doi.org/10.1016/j.scitotenv.2019.135829

    Article  Google Scholar 

  117. Freeze, R.A.; Cherry, J.A.; Cherry, J.A.: Groundwater. Prentice-Hall, Englewood Cliffs (1979)

    Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the Deanship of Scientific Research, King Khalid University, Abha, Saudi Arabia, for funding the Project Grant No. R.G.P2/85/41. The support of King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsad Ahmad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.A., Ahmad, S. & Mohammed, T. Groundwater Contamination by Hazardous Wastes. Arab J Sci Eng 46, 4191–4212 (2021). https://doi.org/10.1007/s13369-021-05452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05452-7

Keywords

Navigation