Skip to main content
Log in

Influence of the 2-phase Flow Models on Prediction of Absorber Tube Performance

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

It is crucial to identify flow regimes/patterns in order to calculate the pressure drop and heat transfer coefficient (HTC) with high accuracy in flow boiling. Researchers have not paid too much attention to the two-phase (2-phase) phenomena and the influence of the 2-phase flow parameters on the performance of absorber tubes. This parametric study sheds the light on some of the well-known and widely used 2-phase flow models/correlations and their impact on absorber performance prediction. The results of 2-phase flow models were compared with experimental data for refrigerants and water to validate these models. Different HTC models are studied. However, the main parameters affecting the absorber tube performance are analyzed and validated. The results showed that for the refrigerant R134a case Wojtan et al. HTC model exhibited the best fit with the experimental data, while in the case of water Shah correlation found to be the best. Moreover, for the pressure drop, Lockhart–Martinelli model showed the best agreement with the experimental data especially at high qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(h\) :

Heat transfer coefficient (W/m2 k)

\(X_{tt}\) :

Martinelli parameter (–)

\(\rho\) :

Density (kg/m3)

\(\sigma\) :

Surface tension (N/m)

\(k\) :

Thermal conductivity (W/m k)

\(C_{p} \) :

Heat capacity (J/kg k)

\(\mu\) :

Liquid dynamic viscosity (Pa.s)

\(T\) :

Temperature (°C)

\(P\) :

Pressure (kpa)

\(v\) :

Specific volume (m3/kg)

\(\gamma\) :

Liquid holdup (–)

\(D\) :

Absorber inner diameter (m)

\(G\) :

Mass flux (kg/m2 s)

\(i\) :

Enthalpy (J/kg)

\({\Delta }P\) :

Pressure drop (kpa)

\(x \) :

Vapor quality (–)

\(h_{{\rm b}} S\) :

Bubble formation (W/m2 k)

\(h_{{\rm L}} F\) :

Convection (W/m2 k)

\(C_{o}\) :

Convection number (–)

\(S \& F\) :

Correction and enhancement factors (–)

\(\phi_{fo}^{2}\) :

2-phase multiplier

\(\phi\) :

Friction multiplier

C:

Constant depends on the flow (turbulent or laminar)

\({\Omega }\) :

Correction factor

\(B_{o}\) :

Boiling number (–) \(= \frac{Q}{{h_{fg} \rho V}}\)

\(\mathrm{Pr}\) :

Prantdl number (–) \(= Cp.\mu /k\)

\(\mathrm{Fr}_{H}\) :

Fraud number = \(\frac{{G^{2} }}{{gD\rho_{{\rm h}}^{2} }}\)

\({ }E\) :

\( = \left( {1 - x} \right)^{2} + \frac{{x^{2} \rho_{{\rm L}} f_{GO} }}{{\rho_{G} f_{LO} }} \;{\mathrm{parameter }}\;{\mathrm{in }}\;{\mathrm{Eq}}{.}\;\left( {31} \right)\)

\(F\) :

\(= x^{0.78} \left( {1 - x} \right)^{0.224} , \;{\mathrm{parameter }}\;{\mathrm{in }}\;{\mathrm{Eq}}{.}\;\left( {31} \right)\)

\(H \) :

\( = \left( {\frac{{\rho_{{\rm L}} }}{{\rho_{G} }}} \right)^{0.91} \left( {\frac{{\mu_{G} }}{{\mu_{{\rm L}} }}} \right)^{0.19} \left( {1 - \frac{{\mu_{G} }}{{\mu_{{\rm L}} }}} \right)^{0.7} \;{\mathrm{parameter }}\;{\mathrm{in }}\;{\mathrm{Eq}}{.}\;\left( {31} \right)\)

\(W{\mathrm{e}}\) :

Weber number \(= \frac{{G^{2} D}}{{\sigma \rho_{{\rm h}} }}\)

\(\rho_{{\rm h}}\) :

Homogeneous density  =  \(\left( {\frac{x}{{\rho_{G} }} + \frac{1 - x}{{\rho_{{\rm L}} }}} \right)^{ - 1}\)

tp:

2-phase flow

fo:

1-phase flow

g:

Gas

l:

Liquid

b:

Nucleate boiling

tpn:

Nucleate boiling is dominant

bc:

Bulk convective

w:

Wall

sat:

Saturation

h:

Homogenous

Bf:

Bankoff

References

  1. Alguacil, M.; Prieto, C.; Rodriguez, A.; Lohr, J.: Direct steam generation in parabolic trough collectors. Energy Procedia 49, 21–29 (2013)

    Article  Google Scholar 

  2. Zarza, E.: Generación Directa de Vapor con Colectores Solares Cilindroparabólicos (2004)

  3. Moreno Quibén, J.; Thome, J.R.: Flow pattern based two-phase frictional pressure drop model for horizontal tubes, part II: new phenomenological model. Int. J. Heat Fluid Flow 28(5), 1060–1072 (2007)

    Article  Google Scholar 

  4. Taitel, Y.; Dukler, A.: A model for predicting flow regime transitions in horizontal and near horizontal gas–liquid ow. AIChE J. 22(1), 47–55 (1976)

    Article  Google Scholar 

  5. Barnea, D.; Shoham, O.; Taitel, Y.; Dukler, A.E.: Gas–liquid flow in inclined tubes: flow pattern transition for upward flow. Chem. Eng. Sci 40, 131–136 (1985)

    Article  Google Scholar 

  6. Hanratty, T.J.: Gas–liquid flow in pipelines. PCH Physicochem. Hydrodyn. 9, 101–114 (1987)

    Google Scholar 

  7. Taitel, Y.: Flow pattern transition in two phase flow. In: Proceeding 91st International Heat Transfer Conference, vol. 1, pp. 237–253. Hemisphere Publishing Corporation, New York (1990)

  8. Odeh, S.D.; Behnia, M.; Morrison, G.L.: Hydrodynamic analysis of direct steam generation solar collectors. Trans. ASME 122, 14–22 (2000)

    Google Scholar 

  9. Sun, J.; Liu, Q.; Hong, H.: Numerical study of parabolic-trough direct steam generation loop in recirculation mode: characteristics, performance and general operation strategy. Energy Convers. Manag. 96, 287–302 (2015)

    Article  Google Scholar 

  10. Baba, Y.D.; Ribeiro, J.X.F.; Aliyu, A.M.; Archibong-Eso, A.; Abubakar, U.D.; Ehinmowo, A.B.: Characteristics of horizontal gas–liquid two-phase flow measurement in a medium-sized pipe using gamma densitometry. Sci. Afr. 10, 1–10 (2020)

    Article  Google Scholar 

  11. Hota, S.K.; Duong, V.; Diaz, G.: Two-phase flow performance prediction for minichannel solar collectors. Heat Mass Transf. Stoffuebertragung 56(1), 109–120 (2020)

    Article  Google Scholar 

  12. Shadloo, M.S.; Rahmat, A.; Karimipour, A.; Wongwises, S.: Estimation of pressure drop of two-phase flow in horizontal long pipes using artificial neural networks. J. Energy Resour. Technol. Trans. ASME 142(11), 112110 (2020)

    Article  Google Scholar 

  13. Sassi, P.; Pallarès, J.; Stiriba, Y.: Visualization and measurement of two-phase flows in horizontal pipelines. Exp. Comput. Multiph. Flow 2(1), 41–51 (2020)

    Article  Google Scholar 

  14. Ghajar, A.J.: Two-phase Gas–Liquid Flow in Pipes with Different Orientations. Springer, Berlin (2020)

    Book  Google Scholar 

  15. Kattan, N.; Thome, J.R.; Favrat, D.: Flow boiling in horizontal tubes: part 1—development of a diabatic two-phase flow pattern map. J. Heat Transf. 120(1), 140–147 (1998)

    Article  Google Scholar 

  16. Zürcher, O.; Favrat, D.; Thome, J.R.: Development of a diabatic two-phase flow pattern map for horizontal flow boiling. Int. J. Heat Mass Transf. 45(2), 291–301 (2001)

    Article  Google Scholar 

  17. Wojtan, L.; Ursenbacher, T.; Thome, J.R.: Investigation of flow boiling in horizontal tubes: part I—a new diabatic two-phase flow pattern map. Int. J. Heat Mass Transf. 48(14), 2955–2969 (2005)

    Article  Google Scholar 

  18. Wojtan, L.; Ursenbacher, T.; Thome, J.R.: Investigation of flow boiling in horizontal tubes: part II—development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. Int. J. Heat Mass Transf. 48(14), 2970–2985 (2005)

    Article  Google Scholar 

  19. Steiner, D.: Zweiphasen stromung in Apparatenelementen, Hochschulkurs Warmeubertragung II. Forschungs-Ge-sellschaft Verfahrenstechnik e.V., Dusseldorf (1983)

    Google Scholar 

  20. Armand, A.A.: The resistance during the movement of a two-phase system in horizontal pipes (1959)

  21. Kroeger, P.G.; Zuber, N.: An analysis of the effects of various parameters on the average void fractions in subcooled boiling. Int. J. Heat Mass Transf. 11(2), 211–233 (1968)

    Article  Google Scholar 

  22. Rouhani, S.Z.; Axelsson, E.: Calculation of void volume fraction in the subcooled and quality boiling regions. Int. J. Heat Mass Transf. 13(2), 383–393 (1970)

    Article  Google Scholar 

  23. Zhang, H.-Q.; Wang, Q.; Sarica, C.; Brill, J.P.: Unified model for gas–liquid pipe flow via slug dynamics—part 1: model development. J. Energy Resour. Technol. 125(4), 266 (2003)

    Article  Google Scholar 

  24. Barnea, D.: A unified model for predicting transitions for the whole pipe inclinations. Int. J. Multiph. Flow 13(I), 1–12 (1987)

    Article  Google Scholar 

  25. Dengler, J.N.; Addoms, C.E.: Heat transfer mechanism for vaporization of water in a vertical tube. Chem. Eng. 18(52), 95–103 (1956)

    Google Scholar 

  26. Shah, M.M.: Chart correlation for saturated boiling heat transfer: equation and further study. ASHRAE Trans. 88(1), 185–196 (1982)

    Google Scholar 

  27. Kandlikar, S.G.: A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J. Heat Transf. 112(1), 219 (1990)

    Article  Google Scholar 

  28. Chen, J.C.: Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng. Chem. Process Des. Dev. 5(3), 322–329 (1966)

    Article  Google Scholar 

  29. Chen, D.L.B.J.C.: Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. Am. Inst. Chem. Eng. 26(3), 454–461 (1980)

    Article  Google Scholar 

  30. Gungor, K.E.; Winterton, R.H.S.: A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transf. 29(3), 351–358 (1986)

    Article  Google Scholar 

  31. Wattelet, J.P., Chato, J.C., Souza, A.L., Christoffersen, B.R.: Evaporative Characteristics of R-134a, MP-39, and R-12 at Low Mass Fluxes Acustar Division of Chrysler Carrier Corporation Ford Motor Company General Electric Company Harrison Division of GM ICI Americas, Inc. Modine Manufacturing Co. Peerless of Ame, vol. 61801, May 1993

  32. Friedel, L.: Improved friction drop correlations for horizontal and vertical two-phase pipe flow. Eur. Two-phase Flow Gr. Meet. Pap. E2, Ispra, Italy (1979)

  33. Lockhart, R.W.; Martinelli, R.C.: Proposed correlation of data for isothermal two-phase, two-component in pipes. Chem. Eng. Process. 45(1), 39–48 (1949)

    Google Scholar 

  34. Chisholm, D.: Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. Int. J. Heat Mass Transf. 16, 347–358 (1973)

    Article  Google Scholar 

  35. Muller-Steinhagen, H.; Heck, K.: A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process. 20, 297–308 (1986)

    Article  Google Scholar 

  36. Bankoff, S.G.: A variable density single-fluid model two-phase flow with particular reference to steam-water. J. Heat Transf. 11(Series B), 265–272 (1960)

    Article  Google Scholar 

  37. Cicchitti, R.Z.A.; Lombardi, C.; Silvestri, M.; Soldaini, G.: Two-phase cooling experiments—pressure drop, heat transfer and burnout measurements. Energy Nucl. 7(6), 407–425 (1960)

    Google Scholar 

  38. Baroczy, C.J.: A systematic correlation for two-phase pressure drop. Chem. Eng. Prog. Symp. Ser. 62(44), 232–249 (1966)

    Google Scholar 

  39. Lobón, D.H.; Valenzuela, L.; Baglietto, E.: Modeling the dynamics of the multiphase fluid in the parabolic-trough solar steam generating systems. Energy Convers. Manag. 78, 393–404 (2014)

    Article  Google Scholar 

  40. da Silva Lima, R.J.; Quibén, J.M.; Thome, J.R.: Flow boiling in horizontal smooth tubes: new heat transfer results for R-134a at three saturation temperatures. Appl. Therm. Eng. 29(7), 1289–1298 (2009)

    Article  Google Scholar 

  41. Bang, K.H.; Kim, K.K.; Lee, S.K.; Lee, B.W.: Pressure effect on flow boiling heat transfer of water in minichannels. Int. J. Therm. Sci. 50(3), 280–286 (2011)

    Article  Google Scholar 

  42. Hardik, B.K.; Prabhu, S.V.: Boiling pressure drop and local heat transfer distribution of water in horizontal straight tubes at low pressure. Nanotechnology 27(9), 3505–3515 (2019)

    Google Scholar 

  43. Lobón, D.H.; Baglietto, E.; Valenzuela, L.; Zarza, E.: Modeling direct steam generation in solar collectors with multiphase CFD. Appl. Energy 113, 1338–1348 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Deanship of Scientific Research at King Fahd University of Petroleum & Minerals for their support under Project No. IN171039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Al-Sarkhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, K.A., Al-Sarkhi, A. & Bahaidarah, H.M. Influence of the 2-phase Flow Models on Prediction of Absorber Tube Performance. Arab J Sci Eng 46, 2833–2844 (2021). https://doi.org/10.1007/s13369-020-05232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05232-9

Keywords

Navigation