Skip to main content
Log in

In-Place Analysis for Structural Integrity Assessment of Fixed Steel Offshore Platform

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures. The structural integrity of platform components under the maximum and minimum operating loads of environmental conditions is required for risk assessment and inspection plan development. In-place analyses have been executed to check that the structural member with all appurtenances has robustness and capability to support the applied loads in either storm condition or operating condition. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the soil–pile–jacket interaction to estimate the in-place behavior of a typical fixed offshore platform. The analysis includes an interpretation of the dynamic design parameters based on the available site-specific data, together with foundation design recommendations for in-place loading conditions. The SACS software is utilized to calculate the natural frequencies, dynamic amplification factors, and the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have important effects on the results of the in-place analysis behavior. The incidence angle of seismic waves is an essential parameter, where, for some crucial angles, the internal forces and the maximum deformations can be doubled or more in comparison with the ones corresponding to other, less crucial angles. Therefore, the incidence angle considerably affects the response quantities. The results confirm that the in-place analysis is quite essential for the reliable design of new offshore platforms and the assessment of existing offshore structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdel Raheem, S.E.; Abdel Aal, E.; Abdel Shafy, A.G.; Fahmy, M.F.M.; Mansour, M.H.: Pile-soil-structure interaction effect on structural response of piled jacket-supported offshore platform through in-place analysis. Earthq. Struct. 18(4), 407–421 (2020). https://doi.org/10.12989/eas.2020.18.4.407

    Article  Google Scholar 

  2. Abdel Raheem, S.E.; Abdel Aal, E.; Abdel Shafy, A.G.; Fahmy, M.F.M.; Omar, M.; Mansour, M.H.: In-place analysis for design level assessment of fixed offshore platform. Ships Offsh. Struct. (2020). https://doi.org/10.1080/17445302.2020.1787931

    Article  Google Scholar 

  3. Abdel Raheem, S.E.; Abdel Aal, E.; Abdel Shafy, A.G.; Fahmy, M.F.M.; Omar, M.; Mansour, M.H.: Numerical analysis for structure-pile-fluid-soil interaction model of fixed offshore platform. Ocean Syst. Eng. 10(3), 243–266 (2020). https://doi.org/10.12989/ose.2020.10.3.243

    Article  Google Scholar 

  4. Abdel Raheem, S.E.; Abdel Aal, E.; Abdel Shafy, A.G.; Mansour, M.H.; Omar, M.: Structural performance assessment of fixed offshore platform based on in-place analysis. Coupled Syst. Mech. 9(5), 433–445 (2020). https://doi.org/10.12989/csm.2020.9.5.433

    Article  Google Scholar 

  5. Gudmestad, O.T.: Challenges in requalification and rehabilitation of offshore platforms on the experience and developments of a norwegian operator. J. Offsh. Mech. Arct. Eng. 122(1), 3–6 (2000)

    Article  Google Scholar 

  6. Haritos, N.: Introduction to the analysis and design of offshore structures—an overview. Electron J. Struct. Eng. Special Issue Load. Struct. Univ. Melb. 7, 55–65 (2007)

    Google Scholar 

  7. Konstandakopoulou, F.D.; Evangelinos, K.I.; Nikolaou, I.E.; Papagiannopoulos, G.A.; Pnevmatikos, N.G.: Seismic analysis of offshore platforms subjected to pulse-type ground motions compatible with European Standards. Soil Dyn. Earthq. Eng. 129, 105713 (2020). https://doi.org/10.1016/j.soildyn.2019.105713

    Article  Google Scholar 

  8. Nour, El-Din M.; Kim, J.K.: Seismic performance of pile-founded fixed jacket platforms with chevron braces. Struct. Infrastruct. Eng. 11, 776–795 (2015)

    Article  Google Scholar 

  9. Abdel Raheem, S.E.: Nonlinear behavior of steel fixed offshore platform under environmental loads. Ships Offsh. Struct. 11(1), 1–15 (2016). https://doi.org/10.1080/17445302.2014.954301

    Article  Google Scholar 

  10. Aggarwal, R.K.; Litton, R.W.; Cornell, C.A.; Tang, W.H.; Chen, J.H.; Murff, J.D.: Development of pile foundation bias factors using observed behavior of platforms during hurricane andrew. In: Offshore Technology Conference, pp. 445–455 (1996)

  11. Bea, R.G.; Jin, Z.; Valle, C.; Ramos, R.: Evaluation of reliability of platform pile foundations. J. Geotech. GeoEnviron. Eng. 125(8), 695–704 (1999)

    Article  Google Scholar 

  12. Ishwarya, S.; Arockiasamy, M.; Senthil, R.: Inelastic nonlinear pushover analysis of fixed jacket-type offshore platform with different bracing systems considering soil-structure interaction. J. Shipp. Ocean Eng. 6(2016), 241–254 (2016)

    Google Scholar 

  13. Scheu, M.N.; Tremps, L.; Smolka, U.; Kolios, A.; Brennan, F.: A systematic failure mode effects and criticality analysis for offshore wind turbine systems towards integrated condition-based maintenance strategies. Ocean Eng. 176(5), 118–133 (2019)

    Article  Google Scholar 

  14. Petrauskas, C.; Finnigan, T.D.; Heideman, J.C.; Vogel, M.; Santala, M.; Berek, G.P.: Metocean criteria/loads for use in assessment of existing offshore platforms. In: Proceedings of Offshore Technology Conference, OTC 7484, Houston (TX) (1994)

  15. Gebara, J.; Dolan, D.; Pawsey, S.; Jeanjean, P.; Dahl-Stamnes, K.: Assessment of offshore platforms under subsidence Part I: approach. ASME J. Offsh. Mech. Arctic Eng. 122, 260–266 (2000)

    Article  Google Scholar 

  16. Elsayed, T.; El-Shaib, M.; Gbr, K.: Reliability of fixed offshore jacket platform against earthquake collapse. Ships Offsh. Struct. 11(2), 167–181 (2016)

    Article  Google Scholar 

  17. Elsayed, T.; El-Shaib, M.; Holmas, T.: Earthquake vulnerability assessment of a mobile jackup platform in the Gulf of Suez. Ships Offsh. Struct. 10(6), 609–620 (2015)

    Article  Google Scholar 

  18. Golafshani, A.A.; Tabeshpour, M.R.; Komachi, Y.: FEMA approaches in seismic assessment of jacket platforms (case study: Ressalat jacket of Persian Gulf). J. Constr. Steel Res. 65, 1979–1986 (2009)

    Article  Google Scholar 

  19. Fei, W.; Zheng, L.: Load assessment on the horizontal braces of semi-submersible drilling platform under ocean wave. Arab. J. Sci. Eng. 24(11), 4789–4799 (2017)

    Article  Google Scholar 

  20. Gücüyen, E.; Erdem, R.T.; Gökkuş, Ü.: Irregular wave effects on dynamic behavior of piles. Arab. J. Sci. Eng. 38(5), 1047–1057 (2013)

    Article  Google Scholar 

  21. Guédé, F.: Risk-based structural integrity management for offshore jacket platforms. Mar. Struct. 63, 444–461 (2019)

    Article  Google Scholar 

  22. Alessi, L.; Correia, J.A.F.O.; Fantuzzi, N.: Initial design phase and tender designs of a jacket structure converted into a retrofitted offshore wind turbine. Energies 2, 659 (2019). https://doi.org/10.3390/en12040659

    Article  Google Scholar 

  23. Correia, J.A.F.O.; Ferradosa, T.; Ferradosa, J.M.; Fantuzzi, N.; De Jesus, A.M.P.: Editorial: renewable energy and oceanic structures: part I. Proc. Inst. Civ. Eng. Marit. Eng. 172(1), 1–2 (2019). https://doi.org/10.1680/jmaen.2019.172.1.1

    Article  Google Scholar 

  24. Konstandakopoulou, F.D.; Papagiannopoulos, G.A.; Pnevmatikos, N.G.; Hatzigeorgiou, G.D.: Seismic hazard assessment of offshore platforms. Int. J. Civ. Environ. Eng. 13(5), 1–5 (2019). https://doi.org/10.5281/zenodo.3298767

    Article  Google Scholar 

  25. Abdel Raheem S.; Abdel Aal, E.: Finite element analysis for structural performance of offshore platforms under environmental loads. Key Eng. Mater. 569(570), 159–166 (2013). https://doi.org/10.4028/www.scientific.net/KEM.569-570.159

    Article  Google Scholar 

  26. Sadian R.; Taheri A.: In-place strength evaluation of existing fixed offshore platform located in persian gulf with consideration of soil-pile interactions. In: The 18th Marine Industries Conference (MIC2016) 18–21 October 2016 – Kish Island (2016)

  27. Sadian, R.; Taheri, A.: In-place strength evaluation of existing fixed offshore platform located in persian gulf with consideration of soil-pile interactions. Int. J. Coast. Offsh. Eng. 1(1), 35–42 (2017)

    Google Scholar 

  28. Abdel Raheem, S.E.: Nonlinear response of fixed jacket offshore platform under structural and wave loads. Coupled Syst. Mech. 2, 111–126 (2013). https://doi.org/10.12989/csm.2013.2.1.111

    Article  Google Scholar 

  29. Khandelwal, D.: Design/analysis procedures for fixed offshore platform jacket structures. Int. J. Adv.Eng. Res. Dev. 5(3), 292–298 (2018)

    MathSciNet  Google Scholar 

  30. AISC (American Institute of Steel Construction): Specification for Structural Steel Buildings, ANSI/AISC 360-05. American Institute of Steel Construction Inc, Chicago (2005)

    Google Scholar 

  31. Malley, J.O.: The 2005 AISC seismic provisions for structural steel buildings. Eng. J. Am. Instit. Steel Construct 44, 3–14 (2007)

    Google Scholar 

  32. Bentley Systems: SACS suite program (Version 5.3). Exton, PA: Bentley Systems (2011). Retrieved from www.bentley.com

  33. NORSOK (2004) NORSOK Standard N-004: Design of Steel Structures. Lysaker, NORWAY

  34. Park, D.-H.; Kim, J.-H.; Park, Y.-J.; Jeon, J.-H.; Kim, M.-H.; Lee, J.-M.: Parametric study for suggestion of the design procedure for offshore plant helideck subjected to impact load. Struct. Eng. Mech. 60(5), 851–873 (2016). https://doi.org/10.12989/sem.2016.60.5.000

    Article  Google Scholar 

  35. API (American Petroleum Institute): Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms -Working Stress Design, API RP-2A - WSD. 22nd edn., Washington (2014)

  36. API (American Petroleum Institute): Recommended Practice—Load Resistance Factor Design for Design of Offshore Structures, API RP 2A-LRFD. 1st edn, July, USA (1993)

  37. API (American Petroleum Institute): Structural integrity management of fixed offshore structures. In: API RP 2SIM, Offshore Technology Conference, 3–6 May, Houston, Texas, USA (2010)

  38. Henry, Z.; Jusoh, I.; Ayob, A.: Structural integrity analysis of fixed offshore jacket structures. J. Mek. 40, 23–36 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehata E. Abdel Raheem.

Ethics declarations

Conflict of interest

The author declares no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Raheem, S.E., Abdel Aal, E.M., Abdel Shafy, A.G.A. et al. In-Place Analysis for Structural Integrity Assessment of Fixed Steel Offshore Platform. Arab J Sci Eng 46, 5031–5045 (2021). https://doi.org/10.1007/s13369-020-05200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05200-3

Keywords

Navigation