Skip to main content

Advertisement

Log in

Long-Term Drained and Post-liquefaction Cyclic Behaviour of Offshore Wind Turbine in Silty Sand Using Element Tests

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Offshore wind turbine (OWT) structure foundations and soil are subjected to long-term cyclic loading from wind and waves. Loads due to earthquake also act on the OWT system in seismically active areas. The long-term dynamic behaviour of the OWT is challenging due to the complex nature of dynamic loads. The soil stiffness changes due to the application of cyclic loading, which leads to a change in the natural frequency and response of the OWT system. Therefore, the assessment of long-term dynamic behaviour soil surrounding the foundation of the OWT structure is essential due to the operational condition and seismic event. In this study, element tests are conducted utilizing cyclic triaxial test apparatus to examine the long-term drained and post-liquefaction long-term cyclic behaviour of silty sand. Secant shear modulus and damping ratio are estimated under drained condition due to 10,000 load cycles. Silty sand behaviour at liquefied phase and post-liquefaction long-term cyclic behaviour phases are investigated at different effective confining pressure, relative density, and shear strain rate. Based on the element tests, a numerical model is proposed predicting the long-term fundamental frequency of OWT to avoid resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Cui, L.; Bhattacharya, S.: Soil–monopile interactions for offshore wind turbines. Proc. Instit. Civil Eng. Eng. Comput. Mech. 169(4), 171–182 (2016)

    Google Scholar 

  2. Westgate Z.J.; DeJong J.T.: Geotechnical considerations for offshore wind turbines. Report for MTC OTC Project 2005

  3. Kuo, Y.S.; Achmus, M.; Abdel-Rahman, K.: Minimum embedded length of cyclic horizontally loaded monopiles. J. Geotech. Geoenviron. Eng. 138(3), 357–363 (2012)

    Article  Google Scholar 

  4. Lombardi, D.: Dynamics of offshore wind turbines. Ph.D. thesis. U. K.: University of Bristol; 2010.

  5. Schaumann, P.; Lochte-Holtgreven, S.; Steppeler, S.: Special fatigue aspects in support structures of offshore wind turbines. Mater. Sci. Technol. 42(12), 1075–1081 (2011)

    Google Scholar 

  6. Lombardi, D.; Bhattacharya, S.; Wood, D.M.: Dynamic soil–structure interaction of monopile supported wind turbines in cohesive soil. Soil Dyn. Earthq. Eng. 49, 165–180 (2013)

    Article  Google Scholar 

  7. Bisoi, S.; Haldar, S.: Dynamic analysis of offshore wind turbine in clay considering soil–monopile–tower interaction. Soil Dyn. Earthq. Eng. 63, 19–35 (2014)

    Article  Google Scholar 

  8. LeBlanc, C.: Design of offshore wind turbine support structures. Ph.D. thesis. Denmark: Aalborg University; (2009)

  9. Nikitas, G.; Arany, L.; Aingaran, S.; Vimalan, J.; Bhattacharya, S.: Predicting long term performance of offshore wind turbines using cyclic simple shear apparatus. Soil Dyn. Earthq. Eng. 92, 678–683 (2017)

    Article  Google Scholar 

  10. Zaaijer, M.B.: Foundation modelling to assess dynamic behaviour of offshore wind turbines. Appl. Ocean Res. 28(1), 45–57 (2006)

    Article  Google Scholar 

  11. Bhattacharya, S.; Nikitas, N.; Garnsey, J.; Alexander, N.A.; Cox, J.; Lombardi, D.; Wood, D.M.; Nash, D.F.: Observed dynamic soil–structure interaction in scale testing of offshore wind turbine foundations. Soil Dyn.Earthq. Eng. 54, 47–60 (2013)

    Article  Google Scholar 

  12. DNVGL-ST-0126. Design of offshore wind turbine structures. DET NORSKE VERITAS; (2016)

  13. Risi, D.R.; Bhattacharya, S.; Goda, K.: Seismic performance assessment of monopile-supported offshore wind turbines using unscaled natural earthquake records. Soil Dyn. Earthq. Eng. 109, 154–172 (2018)

    Article  Google Scholar 

  14. Ghosh B.; Peiris N.; Lubkowski Z.: Assessment of seismic risk for the design of offshore structures in liquefiable soil. In: proceeding of 4th International Conference on Earthquake Geotechnical Engineering (2007)

  15. Wang, P.; Li, Q.; Li, C.F.: Sedimentology. In: Wang, P.; Li, Q.; Li, C.F. (eds.) Developments in Marine Geology, vol. 6, pp. 183–340, Elsevier (2014)

  16. Gulhati, S. K.: Geotechnical Aspects of the Indian offshore environment. In: 31st Annual General Session, Indian Geotechnical Conference, Visakhapatnam, India

  17. Son, S.W.; Ko, M.J.; Kim, J.M.: Cyclic shear behavior characteristics of marine silty sand. J. Mar. Sci. Technol. 25(6), 784–790 (2017)

    Google Scholar 

  18. Bhattacharya, S.; Lombardi, D.; Wood, D.M.: Similitude relationships for physical modelling of monopile-supported offshore wind turbines. Int. J. Phys. Modell. Geotech. 11(2), 58–68 (2011)

    Article  Google Scholar 

  19. Cox, J.; Jones, C.: Long term performance of suction caisson supported offshore wind turbines. Struct. Eng. 89(19), 12–13 (2011)

    Google Scholar 

  20. Ma, H.; Yang, J.; Chen, L.: Numerical analysis of the long-term performance of offshore wind turbines supported by monopiles. Ocean Eng. 136, 94–105 (2017)

    Article  Google Scholar 

  21. Abhinav, K.A.; Saha, N.: Dynamic analysis of monopile supported offshore wind turbines. Proc. Instit. Civil Eng. Geotech. Eng. 170(5), 428–444 (2017)

    Article  Google Scholar 

  22. Wang, X.; Yang, X.; Zeng, X.: Lateral response of improved suction bucket foundation for offshore wind turbine in centrifuge modelling. Ocean Eng. 141, 295–307 (2017)

    Article  Google Scholar 

  23. Duan, N.; Cheng, Y.P.; Xu, X.: Distinct-element analysis of an offshore wind turbine monopile under cyclic lateral load. Proc. Instit. Civil Eng.-Geotech. Eng. 170(6), 517–533 (2017)

    Article  Google Scholar 

  24. Bhattacharya, S.; Adhikari, S.: Experimental validation of soil–structure interaction of offshore wind turbines. Soil Dyn. Earthq. Eng. 31(5–6), 805–816 (2011)

    Article  Google Scholar 

  25. Cuéllar, P.; Georgi, S.; Baeßler, M.; Rücker, W.: On the quasi-static granular convective flow and sand densification around pile foundations under cyclic lateral loading. Granul. Matter 14(1), 11–25 (2012)

    Article  Google Scholar 

  26. API-RP-2GEO: Geotechnical and Foundation Design Considerations. American Petroleum Institute, Washington (2011)

    Google Scholar 

  27. Weijtjens W, Verbelen T, Devriendt C. Temporal evolution of stiffness for offshore monopile foundations. In: Proceedings of Offshore Wind Energy Conference 2017; London.

  28. Arany, L.; Bhattacharya, S.; Macdonald, J.; Hogan, S.J.: Design of monopiles for offshore wind turbines in 10 steps. Soil Dyn. Earthq. Eng. 92, 126–152 (2017)

    Article  Google Scholar 

  29. Lombardi, D.; Dash, S.R.; Bhattacharya, S.; Ibraim, E.; Muir Wood, D.; Taylor, C.A.: Construction of simplified design p–y curves for liquefied soils. Géotechnique 67(3), 216–227 (2017)

    Article  Google Scholar 

  30. Nozu, A.; Ichii, K.; Sugano, T.: Seismic design of port structures. J. Jpn Assoc. Earthq. Eng. 4(3), 195–208 (2004)

    Google Scholar 

  31. Standard-IS, Indian. IS 2720 (Part 3) 1980. Methods of test for soils, determination of specific gravity, fine, medium and coarse grained soils, New Delhi.

  32. Standard-IS, Indian. IS 2720 (Part 14) 2006. Methods of Test for Soils–Determination of Density Index for Cohesionless Soils.

  33. Iwasaki, T.; Tatsuoka, F.; Takagi, Y.: Shear moduli of sands under cyclic torsional shear loading. Soils Found. 18(1), 39–56 (1978)

    Article  Google Scholar 

  34. Hardin, B.O.: The nature of damping in sands. J. Soil Mech. Found. Div. 92(5), 490 (1965)

    Google Scholar 

  35. Kokusho, T.: Cyclic triaxial test of dynamic soil properties for wide strain range. Soils Found. 20(2), 45–60 (1980)

    Article  Google Scholar 

  36. Lin, M.L.; Huang, T.H.; You, J.C.: The effects of frequency on damping properties of sand. Soil Dyn. Earthq. Eng. 15(4), 269–278 (1996)

    Article  Google Scholar 

  37. Orfanidis, S.J.: Introduction to signal processing. Prentice-Hall, Englewood Cliffs, NJ (1996)

  38. Schafer, R.W.: What is a Savitzky-Golay filter? (lecture notes). IEEE Signal Process. Mag. 28(4), 111–117 (2011)

    Article  Google Scholar 

  39. Kramer, S.L.: Geotechnical Earthquake Engineering. Prentice Hall, New Jersey (1996)

    Google Scholar 

  40. Ravishankar B.V.; Sitharam T.G.; Govindaraju L.: Dynamic properties of Ahmedabad sands at large strains. In: Proceedings of Indian Geotechnical Conference 2005; pp. 17–19

  41. Rollins, K.M.; Evans, M.D.; Diehl, N.B.: Shear modulus and damping relationships for gravels. J. Geotech. Geoenviron. Eng. 124(5), 396–405 (1998)

    Article  Google Scholar 

  42. Chung, R.M.; Yokel, F.Y.; Drnevich, V.P.: Evaluation of dynamic properties of sands by resonant column testing. Geotech. Test. J. 7(2), 60–69 (1984)

    Article  Google Scholar 

  43. Towhata, I.: Geotechnical Earthquake Engineering 2008; Springer Series in Geomechanics and Geoengineering. Springer, Berlin (2008)

    Google Scholar 

  44. Towhata, I.; Haga, K.; Nakamura, S.: Effects of cyclic drained shear or rigidity of sand. In: Proceedings of 20th National Conference on Soil Mechanics and Foundation Engineering 1985, Vol. 1, pp. 591–592

  45. Finn, W.D.; Pickering, D.J.; Bransby, P.L.: Sand liquefaction in triaxial and simple shear tests. J. Soil Mech. Found. Div. 97(4), 639–659 (1971)

    Article  Google Scholar 

  46. Seed HB.; Idriss IM.: Simplified procedure for evaluating soil liquefaction potential. J. Soil Mech. Found. Div. 97(9), 1249–1273 (1971)

    Article  Google Scholar 

  47. Rouholamin, M.; Bhattacharya, S.; Orense, R.P.: Effect of initial relative density on the post-liquefaction behaviour of sand. Soil Dyn. Earthq. Eng. 97, 25–36 (2017)

    Article  Google Scholar 

  48. Mazzoni, S.; McKenna, F., Fenves, G.L.: Open System for Earthquake Engineering Simulation (OpenSees) user manual 2006, Pacific Earthquake Engineering Research Center, University of California, Berkeley (http://opensees.berkeley.edu/)

  49. McKenna, F.; Scott, M.; Fenves, G.: Nonlinear finite-element analysis software architecture using object composition. J. Comput. Civil Eng. 24(1), 95–107 (2010)

    Article  Google Scholar 

  50. Cui, C.; Jiang, H.; Li, Y.H.: Semi-analytical method for calculating vibration characteristics of variable cross-section beam. J. Vibr. Shock 31(14), 85–88 (2012)

    Google Scholar 

  51. Wang, P.; Zhao, M.; Du, X.; Liu, J.; Xu, C.: Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay. Soil Dyn. Earthq. Eng. 113, 47–57 (2018)

    Article  Google Scholar 

  52. Boulanger, R.W.; Curras, C.J.; Kutter, B.L.; Wilson, D.W.; Abghari, A.: Seismic soil-pile-structure interaction experiments and analyses. J. Geotech. Geoenviron. Eng. 125(9), 750–759 (1999)

    Article  Google Scholar 

  53. Arany, L.; Bhattacharya, S.; Macdonald, J.; Hogan, S.J.: Simplified critical mudline bending moment spectra of offshore wind turbine support structures. Wind Energy 18(12), 2171–2197 (2014)

    Article  Google Scholar 

  54. Hu W.-H., Thöns S., Said S., Rücker W.: Resonance phenomenon in a wind turbine system under operational conditions. In: Cunha, E., Caetano, P., Ribeiro, G. Müller (eds.), Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, 2014, A. ISSN: 2311-9020; ISBN: 978-972-752-165-4

  55. Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Lab (NREL), Golden, CO, United States (2009)

  56. Gilbert, R.; Stokoe, K.; Huang, Y.; Munson, J.; Bauer, J.; Hosseini, R.; Hussien, A.: Laboratory testing of lateral load response for monopiles in sand. 2018; BSEE/BOEM TAP, 769

Download references

Acknowledgements

The authors are thankful to the anonymous reviewers for their critical comments, which have helped improve the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Haldar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, S.K., Haldar, S. Long-Term Drained and Post-liquefaction Cyclic Behaviour of Offshore Wind Turbine in Silty Sand Using Element Tests. Arab J Sci Eng 46, 4791–4810 (2021). https://doi.org/10.1007/s13369-020-05167-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05167-1

Keywords

Navigation