Skip to main content
Log in

Analysis of the Vibration Characteristic of an Experimental Turning Lathe Using Artificial Neural Networks

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the complexity of the tool and cutting geometry in machining, many undesirable effects occur during the cutting. Vibrations affecting the poor surface quality of the workpiece and the tool life are one of the most important undesirable effects. These vibrations causing loss of production should be detected and the most appropriate working conditions in which the machine tools will work more stable should be determined. In this work, an artificial neural network estimator has been designed in order to analyze the oscillating effects on computer numerical control (CNC) lathes. Firstly, experimental studies have been carried out, and then vibration analysis has been performed by using two types of artificial neural networks. The experimental part of this manuscript analyses has been carried out for the different material types, spindle speeds and feed rates which are affecting the vibration. After the experimental part, two different artificial neural network structures have been proposed in order to analyze the vibration data measured from the CNC lathe under the relevant working conditions. As a result of these experimental and simulation-based approaches, it was seen that the proposed RBNN structure has a good performance even in real-time parameters in capturing the vibrations occurring in the CNC lathe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Siddhpura, M.; Paurobally, R.: A review of chatter vibration research in turning. Int. J. Mach. Tool Manuf. (2012). https://doi.org/10.1016/j.ijmachtools.2012.05.007

    Article  Google Scholar 

  2. Catania, G.; Mancinelli, N.: Theoretical–experimental modeling of milling machines for the prediction of chatter vibration. Int. J. Mach. Tool Manuf. (2011). https://doi.org/10.1016/j.ijmachtools.2010.11.008

    Article  Google Scholar 

  3. Alan, S.; Budak, E.; Özgüven, H.N.: Analytical prediction of part dynamics for machining stability analysis. Int. J. Autom. Technol. (2010). https://doi.org/10.20965/ijat.2010.p0259

    Article  Google Scholar 

  4. Bharilya, R.K.; Malgaya, R.; Patidar, L.; Gurjar, R.K.; Jha, A.K.: Study of optimised process parameters in turning operation through force dynamometer on CNC machine. Mater. Today Proc. (2015). https://doi.org/10.1016/j.matpr.2015.07.268

    Article  Google Scholar 

  5. Okonkwo, U.C.; Nwoke, O.N.; Okokpujie, I.P.: Comparative analysis of chatter vibration frequency in CNC turning of AISI 4340 alloy steel with different boundary conditions. J. Covenant Eng. Technol. 1(1), 13–27 (2018)

    Google Scholar 

  6. Powalka, B.; Dhupia, J.S.; Ulsoy, A.G.; Katz, R.: Identification of machining force model parameters from acceleration measurements. Int. J. Manuf. Res. 3(3), 265–284 (2008)

    Article  Google Scholar 

  7. Hossain, M.S.; Chao, O.Z.; Ismail, Z.; Noroozi, S.; Khoo, S.Y.: Artificial neural networks for vibration based inverse parametric identifications. A review. Appl. Soft Comput. (2017). https://doi.org/10.1016/j.asoc.2016.12.014

    Article  Google Scholar 

  8. Rao, K.V.; Murthy, P.B.G.S.N.: Modeling and Optimization of Tool Vibration and Surface Roughness in Boring of Steel Using RSM, ANN and SVM. J. Intell. Manuf (2018). https://doi.org/10.1007/s10845-016-1197-y

    Article  Google Scholar 

  9. Mc, K.R.; Malghan, R.L.; Shettigar, A.K.; Rao, S.S.; Herbert, M.A.: Application of back propagation algorithms in neural network based identification responses of AISI 316 face milling cryogenic machining technique. Aust. J. Mech. Eng. (2020). https://doi.org/10.1080/14484846.2020.1740022

    Article  Google Scholar 

  10. Ulas, H.B.; Ozkan, M.T.; Malkoc, Y.: Vibration prediction in drilling processes with HSS and carbide drill bit by means of artificial neural networks. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3379-3

    Article  Google Scholar 

  11. Shrivastava, Y.; Singh, B.: Possible way to diminish the effect of chatter in CNC turning based on EMD and ANN approaches. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-017-2993-1

    Article  Google Scholar 

  12. Ayaz, E.: Autoregressive modeling approach of vibration data for bearing fault diagnosis in electric motors. J. VibroEng. 16(5), 2130–2138 (2014)

    MathSciNet  Google Scholar 

  13. Nandi, S.; Toliyat, H.; Li, X.: Condition monitoring and fault diagnosis of electrical motors—a review. IEEE Trans. Energy Convers. (2005). https://doi.org/10.1109/TEC.2005.847955

    Article  Google Scholar 

  14. Khodja, A.Y.; Guersi, N.; Saadi, M.N.; Boutasseta, N.: Rolling element bearing fault diagnosis for rotating machinery using vibration spectrum imaging and convolutional neural networks. Int. J. Adv. Manuf. Technol. 106(5–6), 1737–1751 (2020)

    Article  Google Scholar 

  15. Eski, İ.: Vibration analysis of drilling machine using proposed artificial neural network predictors. J. Mech. Sci. Technol. (2012). https://doi.org/10.1007/s12206-012-0813-9

    Article  Google Scholar 

  16. Materka, A.; Strzelecki, M.: Parametric testing of mixed-signal circuits by ANN processing of transient responses. J. Electron Test. (1996). https://doi.org/10.1007/BF00137574

    Article  MATH  Google Scholar 

  17. Esim, E.; Yıldırım, Ş.: Drilling performance analysis of drill column machine using proposed neural networks. Neural Comput. Appl. (2017). https://doi.org/10.1007/s00521-016-2322-8

    Article  Google Scholar 

  18. Garg, S.; Pal, S.K.; Chakraborty, D.: Evaluation of the performance of backpropagation and radial basis function neural networks in predicting the drill flank wear. Neural Comput. Appl. (2007). https://doi.org/10.1007/s00521-006-0065-7

    Article  Google Scholar 

  19. Li, B.; Chow, M.; Tipsuwan, Y.; Hung, J.: Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Indust. Electron. (2000). https://doi.org/10.1109/41.873214

    Article  Google Scholar 

  20. Pietrowski, W.: Application of radial basis neural network to diagnostics of induction motor stator faults using axial flux. Electric. Review 87(6), 190–192 (2011)

    Google Scholar 

  21. Altintas, Y.: Manufacturing Automation, 2nd edn. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  22. Stephenson, D.A.; Agapiou, J.S.: Metal Cutting Theory and Practice. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  23. Clough, R.W.; Penzien, J.: Dynamics of Structures. McGraw-Hill, New York (1993)

    MATH  Google Scholar 

  24. Rao, S.S.: Mechanical Vibrations Prentice. Hall, USA (2011)

    Google Scholar 

  25. Haykin, S.S.: Neural Networks and Learning Machines. Prentice Hall, New York (2009)

    Google Scholar 

  26. Yildirim, Ş.; Eski, İ.; Kalkat, M.: Force analysis of bearings on a modified mechanism using proposed recurrent hybrid neural networks. J. Mech. Sci. Technol. (2008). https://doi.org/10.1007/s12206-008-0415-8

    Article  Google Scholar 

  27. Broomhead D. S.; Lowe D.: Complex system 2. In: Multivariable Functional Interpolation and Adaptive Networks, pp 568-576 Royal Signals and Radar Establishment Malvern, United Kingdom (1998)

  28. Haykin, S.: Neural Networks A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  29. Demuth H. B.; Beale M. H.; De Jess O.; Hagan M. T.: Neural network design (2nd ed.), Martin Hagan, eBook (2014)

  30. Pano-Azucena, A.D.; Tlelo-Cuautle, E.; Tan, S.X.D.; De la Fraga, L.G.: FPGA-based implementation of a multilayer perceptron suitable for chaotic time series prediction. Technologies (2018). https://doi.org/10.3390/technologies6040090

    Article  Google Scholar 

Download references

Funding

This study has not been funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Bahadır Çetinkaya.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetinkaya, M.B., Esim, E. & İşci, M. Analysis of the Vibration Characteristic of an Experimental Turning Lathe Using Artificial Neural Networks. Arab J Sci Eng 46, 2597–2611 (2021). https://doi.org/10.1007/s13369-020-05162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05162-6

Keywords

Navigation