Skip to main content
Log in

Digital Assisted Truncation Noise Shaping Technique for Multi-bit \(\Sigma \Delta \) Modulators

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A second-order multi-bit \(\Sigma \Delta \) modulator facilitating the usage of a two-step flash analog-to-digital converter (ADC) as an internal quantizer is presented. A digital assisted low-resolution feedback digital-to-analog converter (DAC) is introduced containing digital sigma-delta modulators (DSDMs) to reduce the number of levels in the feedback DAC alleviating dynamic element matching requirements. Two-step flash ADC as an internal quantizer in a \(\Sigma \Delta \) modulator provides higher resolution; however, the delay in the two-step ADC can introduce instability in the \(\Sigma \Delta \) modulator loop. In the proposed architecture, the fast processing of the digital integrator of DSDM in the feedback path compensates the latency of the two-step flash ADC. Therefore, this architecture provides more than 6 bits of resolution in the internal quantizer. The implementation of an extra DSDM in the outermost feedback path relaxes the matching requirement of the analog and digital integrators. The effectiveness of the proposed structure is demonstrated by the study of nonlinearities of the analog integrators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jeong, D.; Yoo, C.: A 4-MHz bandwidth continuous-time sigma-delta modulator with stochastic quantizer and digital accumulator. IEEE Trans. Circuits Syst. II Exp. Briefs 66(7), 1124–1128 (2019)

    Article  Google Scholar 

  2. He, L.; et al.: A multibit deltasigma modulator with double noise-shaped segmentation. IEEE Trans. Circuits Syst. II Exp. Briefs 62(3), 241–245 (2015)

    Article  Google Scholar 

  3. Yan, H.; He, L.; Ye, Y.; Lin, F.: A second-order continuous-time delta-sigma modulator with double self noise coupling. Analog Integr. Circuits Sig. Process 99(2), 251–259 (2019)

    Article  Google Scholar 

  4. Rezapour, A.; Shamsi, H.: Digital noise coupled MASH delta-sigma modulator. IEEE Trans. Circuits Syst. II Exp. Briefs 66(1), 41–45 (2019)

    Article  Google Scholar 

  5. Colodro, F.; Torralba, A.; Mora, J.L.: Digital noise-shaping of residues in dual-quantization sigma-delta modulators. IEEE Trans. Circuits Syst. I Reg. Pap. 51(2), 225–232 (2004)

    Article  Google Scholar 

  6. Wu, J.; Zhang, Z.; Subramoniam, R.; Maloberti, F.: A 107.4 dB SNR multi-bit sigma delta ADC with 1-PPM THD at -0.12 dB from full scale input. IEEE J. Solid State Circuits 44(11), 3060–3066 (2009)

    Article  Google Scholar 

  7. Irfansyah, A.N.; Lehmann, T.; Jenkins, J.; Tong, T.; Hamilton, T.J.: A resistive DAC for a multi-stage sigma-delta modulator DAC with dynamic element matching. Analog Integr. Circuits Signal Process. 98(1), 109–123 (2019)

    Article  Google Scholar 

  8. Sharifi, L.; Hashemipour, O.: Multi-bit quantizer delta-sigma modulator with the feedback DAC mismatch error shaping. In: 27th Iranian Conference on Electrical Engineering (ICEE) IEEE, Iran, pp. 209–213 (2019)

  9. Yu, J.; Maloberti, F.: A low-power multi-bit \(\Sigma \Delta \) modulator in 90-nm digital CMOS without DEM. IEEE J. Solid State Circuits 40(12), 2428–2436 (2005)

    Article  Google Scholar 

  10. Liu, Q.; Edward, A.; Zhou, D.; Silva-Martinez, J.: A continuous-time MASH 1-1-1 delta-sigma modulator With FIR DAC and encoder-embedded loop-unrolling quantizer in 40-nm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(4), 756–767 (2018)

    Article  Google Scholar 

  11. Dey, S.; Reddy, K.; Mayaram, K.; Fiez, T.S.: A 50 MHz BW 76.1 dB DR two-stage continuous-time delta-sigma modulator with VCO quantizer nonlinearity cancellation. IEEE J. Solid State Circuits 53(3), 799–813 (2018)

    Article  Google Scholar 

  12. Jain, A.; Pavan, S.: Continuous-time delta-sigma modulators with time-interleaved FIR feedback. IEEE Trans. Circuits Syst. I Reg. Pap. 65(2), 434–443 (2018)

    Article  MathSciNet  Google Scholar 

  13. Zhang, Y.; He, X.; Pun, K.: An extremely linear multi-level DAC for continuous-time delta-sigma modulators. IEEE Trans. Circuits Syst. II Exp. Briefs 66(3), 367–371 (2019)

    Article  Google Scholar 

  14. Zhang, Y.; Basak, D.; Pun, K.: A highly linear multi-level SC DAC in a power-efficient Gm-C continuous-time delta-sigma modulator. IEEE Trans. Circuits Syst. I Reg. Pap. 66(12), 4592–4605 (2019)

    Article  Google Scholar 

  15. Pakniat, H.; Yavari, M.: A \(\Sigma \Delta \)-FIR-DAC for multi-bit \(\Sigma \Delta \) modulators. IEEE Trans. Circuits Syst. I Reg. Pap. 60(9), 2321–2332 (2013)

    Article  MathSciNet  Google Scholar 

  16. Sharifi, L.; Hashemipour, O.: Mismatch error shaping of DAC unit elements in multi-bit \(\Delta \Sigma \) modulators using a novel unified ADC/DAC. Turk. J. Electr. Eng. Comput. Sci. (2020) (accepted)

  17. Leslie, T.C.; Singh, B.: An improved sigma-delta modulator architecture. In: Proceedings of IEEE International Symposium on Circuits Systems, vol. 1. New Orleans, LA, USA, pp. 372–375 (1990)

  18. Wang, Q.-Q.; Ge, B.-J.; Feng, X.-X.; Wang, X.-A.: Digital noise shaping multibit delta-sigma modulator. Electron. Lett. 46(16), 1110–1111 (2010)

    Article  Google Scholar 

  19. He, L.; et al.: Digital noise-coupling technique for DeltaSigma modulators with segmented quantization. IEEE Trans. Circuits Syst. II Exp. Briefs 61(6), 403–407 (2014)

    Article  Google Scholar 

  20. Tsai, H.; Lo, C.; Ho, C.; Lin, Y.: A 64-fJ/conv.-step continuous-time \(\Sigma \Delta \) modulator in 40-nm CMOS using asynchronous SAR quantizer and digital \(\Delta \Sigma \) truncator. IEEE J. Solid State Circuits 48(11), 2637–2648 (2013)

    Article  Google Scholar 

  21. He, T.; Zhang, Y.; Temes, G.C.: Digital excess loop delay compensation technique with embedded truncator for continuous-time delta-sigma modulators. Electron. Lett. 52(1), 20–21 (2016)

    Article  Google Scholar 

  22. Weng, C.; Lin, Y.; Lin, T.: A 1-V 5-MHz bandwidth 68.3-dB SNDR continuous-time delta-sigma modulator with a feedback-assisted quantizer. IEEE Trans. Circuits Syst. I Reg. Pap. 64(5), 1085–1093 (2017)

    Article  Google Scholar 

  23. Polineni, S.; Bhat, M.S.; Rajan, A.: A 10-bit differential ultra-low-power SAR ADC with an enhanced MSB capacitor-split switching technique. Arab. J. Sci. Eng. 44(3), 2345–2353 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors of the manuscript thankfully acknowledge the significant help and collaborations of Prof. Franco Maloberti and Prof. Edoardo Bonizzoni, Integrated Microsystem (IMS) Laboratory, Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, Italy. We wish to thank them for their invaluable comments in investigating the idea of the manuscript, its organization and the simulation process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Hashemipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, L., Hashemipour, O. Digital Assisted Truncation Noise Shaping Technique for Multi-bit \(\Sigma \Delta \) Modulators. Arab J Sci Eng 46, 1279–1286 (2021). https://doi.org/10.1007/s13369-020-05055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05055-8

Keywords

Navigation