Skip to main content
Log in

Investigations of Strain Rate Effects on the Mechanical Properties of Hybrid Composite Laminate Under Varying Temperatures

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The mechanical behavior of hybrid composite laminates under varying strain rates and temperatures was investigated in this study. The hybrid composite laminate is constituted as a sequential stacking sequence of plain-woven carbon-fiber-reinforced epoxy (CFRE) and plain-woven glass-fiber-reinforced epoxy (GFRE) laminates. Vacuum-assisted resin transfer molding (VARTM) process was used to fabricate the composite laminates. Hybrid composite laminates (HCGFRE) were tested under four different strain rates (0.05 min−1, 0.5 min−1, 2.5 min−1, 5 min−1) and three different temperatures (RT, 60 °C, 100 °C). Microstructure analysis was performed to observe the voids, fiber delamination and matrix failure occurring in the composite laminate. In numerical analyses, continuum damage mechanics material model (MAT 58) was utilized in LS-DYNA® explicit finite element program to simulate the mechanical properties of CFRE, GFRE and HCGFRE laminates. It was determined that the tensile strength of all composite laminates is increasing by increasing the strain rates in all temperatures. The continuous damage mechanics material model (MAT 58) was found to be suitable for simulating woven composite laminate under different strain rates and temperatures. In microstructural study, it was not observed significant changes in the microstructure of composite laminates by changing strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mohanavel, V.; Rajan, K.; Senthil, P.V.; Arul, S.: Mechanical behaviour of hybrid composite (AA6351 + Al2O3 + Gr) fabricated by stir casting method. Mater. Today Proc. 4, 3093–3101 (2017)

    Article  Google Scholar 

  2. Singh, B.; Gupta, M.; Verma, A.: Mechanical behaviour of particulate hybrid composite laminates as potential building materials. Constr. Build. Mater. 9, 39–44 (1995)

    Article  Google Scholar 

  3. Mousa, B.H.; Gamsy, R.E.; Latif, M.H.A.: Mechanical behaviour of rubber hybrid composites. IOP Conf. Series. Mater Sci Eng. 610, 1–8 (2019)

    Article  Google Scholar 

  4. Stevanovic, M.M.; Stecenko, T.B.: Mechanical behaviour of carbon and glass hybrid fibre reinforced polyester composites. J. Mater. Sci. 27, 941–946 (1992)

    Article  Google Scholar 

  5. Athipathi, K.; Vijay, V.H.S.: Evaluation of mechanical behaviour of natural fiber hybrid composite material. Int. J. Adv. Res. Sci. Eng. Technol. 3, 2041–2049 (2016)

    Google Scholar 

  6. Elanchezhian, C.; Ramnath, B.V.; Hemalatha, J.: Mechanical behaviour of glass and carbon fibre reinforced composites at varying strain rates and temperatures. Procedia Mater. Sci. 6, 1405–1418 (2014)

    Article  Google Scholar 

  7. Coelhoa, J.L.V.; Reisb, J.M.L.: Effects of strain rate and temperature on the mechanical properties of GFRE composites. Tecnol 10, 3–6 (2011)

    Google Scholar 

  8. Zhang, H.; Yao, Y.; Zhu, D.; Mobasher, B.; Huang, L.: Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures. Polym. Test. 51, 29–39 (2016)

    Article  Google Scholar 

  9. Ou, Y.; Zhu, D.; Zhang, H.; Huang, L.; Yao, Y.; Li, G.; Mobasher, B.: Mechanical characterization of the tensile properties of glass fiber and its reinforced polymer (GFRE) composite under varying strain rates and temperatures. Polym 8, 1–16 (2016)

    Google Scholar 

  10. Miwa, M.; Horiba, N.: Strain rate and temperature dependence of tensile strength for carbon/glass fibre hybrid composites. J. Mater. Sci. 28, 6741–6747 (1993)

    Article  Google Scholar 

  11. Ray, B.C.: Loading rate effects on mechanical properties of polymer composites at ultralow temperatures. J. Appl. Polym. Sci. 100, 2289–2292 (2006)

    Article  Google Scholar 

  12. Ou, Y.; Zhu, D.: Tensile behavior of glass fiber reinforced composite at different strain rates and temperatures. Constr. Build. Mater. 96, 648–656 (2015)

    Article  Google Scholar 

  13. Lisle, T.; Bouvet, C.; Pastor, M.L.; Rouault, T.; Margueres, P.: Damage of woven composite under tensile and shear stress using infrared thermography and micrographic cuts. J. Mater. Sci. (2015). https://doi.org/10.1007/s10853-015-9173-z

    Article  Google Scholar 

  14. Schultz, J.M.; Friedrich, K.: Effect of temperature and strain rate on the strength of a PET/glass fibre composite. J. Mater. Sci. 19, 2246–2258 (1984)

    Article  Google Scholar 

  15. Aklilu, G.; Adali, S.; Bright, G.: Tensile behaviour of hybrid and non-hybrid polymer composite specimens at elevated temperatures. Eng. Sci. Technol. Int. J. (2019). https://doi.org/10.1016/j.jestch.2019.10.003

    Article  Google Scholar 

  16. Fitoussi, J.; Bocquet, M.; Meraghni, F.: Effect of the matrix behavior on the damage of ethylene–propylene glass fiber reinforced composite subjected to high strain rate tension. Compos. Part B Eng. 45, 1181–1191 (2012)

    Article  Google Scholar 

  17. Tasdemircia, A.; Karaa, A.; Turan, A.K.; Tunusoglua, G.; Gudena, M.; Hallb, I.W.: Experimental and numerical investigation of high strain rate mechanical behavior of a [0/45/90/- 45] Quadriaxial EGlass/Polyester Composite. Procedia. Eng. 10, 3068–3073 (2011)

    Article  Google Scholar 

  18. Shi, D.; Xiao, X.: An enhanced continuum damage mechanics model for crash simulation of composites. Compos. Struct. 185, 774–785 (2018)

    Article  Google Scholar 

  19. Jackson, K.E.; Fasanella, E.L.; Littell, J.D.: Development of a continuum damage mechanics Material Model of a Graphite-Kevlar® Hybrid Fabric for Simulating the Impact response of energy absorbing subfloor concepts. AHS International 73rd Annual Forum and Technology Display, Texas (2017)

  20. Banerjee, S.; Sankar, B.V.: Mechanical properties of hybrid composites using finite element method based micromechanics. Compos. Part. B. 58, 318–327 (2014)

    Article  Google Scholar 

  21. Voyiadjis, G.Z.; Asce, F.; Faghihi, D.; Zhang, C.: Analytical and experimental determination of rate- and temperature-dependent length scales using nano indentation experiments. J. Nanomech. Micromech. 1, 24–40 (2011)

    Article  Google Scholar 

  22. Corigliano, A.; Mariani, S.; Pandolfi, A.: Numerical analysis of rate-dependent dynamic composite delamination. Compos. Sci. Technol. 66, 766–775 (2006)

    Article  Google Scholar 

  23. Tasdemirci, A.; Hall, I.W.: Numerical and experimental studies of damage generation in a polymer composite material at high strain rates. Polym. Test. 25, 797–806 (2006)

    Article  Google Scholar 

  24. Gama, B.A.; Bogetti, T.A.; Gillespie, J.W.: Progressive damage modeling of plain-weave composites using LS-Dyna composite damage model MAT162. In: 7th European LS-DYNA Conference, Salzburg, (May 2009)

  25. Haque, B.Z.; Gillespie, J.W.: Rate dependent progressive composite damage modeling using MAT162 in LS-DYNA. 13th International LS-DYNA User Conference, Detroit (2014)

  26. Tay, T.E.; Liu, G.; Tan, V.B.C.; Sun, X.S.; Pham, D.C.: Progressive failure analysis of composites. J. Compos. Mater. 42, 1921–1966 (2008)

    Article  Google Scholar 

  27. Swiss-composite.: Araldite LY 1564/aradur 3486/aradur 3487. Huntsman Web (2012). https://www.swiss-composite.ch/pdf/t-Araldite-LY1564-Aradur3486-3487-e.pdf. Accessed 25 July 2012

  28. Performance composites.: Mechanical properties of carbon fibre composite materials, fibre/epoxy resin. Composite materials engineering specialists in carbon fibre http://www.performancecomposites.com/carbonfibre/mechanicalproperties_2.asp (2009). Accessed 01 July 2009

  29. Wallenberger, F.T.; Watson, J.C.; Li, H.: Glass Fibers. In: Miracle, D.B.; Donaldson, S.L. (eds.) Composites, pp. 27–34. ASM Handbook, Ohio (2001)

    Google Scholar 

  30. Jensen, B.J.; Cano, R.J.; Hales, S.J.; Alexa, J.A.; Weiser, E.S.; Loos, A.C.; Johnson, W.S.: Fiber metal laminates made by the VARTM process. In: 7th International Conference on Composite Materials, Edinburgh (2009)

  31. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  32. Matzenmiller, A.; Lubliner, J.; Taylor, R.L.: A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20, 125–152 (1995)

    Article  Google Scholar 

  33. Jackson, K.E.; Littell, J.D.; Fasanella, E.L.: Simulating the Impact Response of Composite Airframe Components. 13th International LS-DYNA User Conference, Detroit (2014)

  34. LS-DYNA keyword user’s manual, version 971. Livermore, CA: Livermore Software Technology Corporation (2007)

  35. Newbold, P.; Carlson, W.L.; Thorne, B.M.: Statistics for Business and Economics. Prentice Hall, New Jersey (1994)

    Google Scholar 

  36. Azadia, M.; Sayara, H.; Ghalebahmana, A.G.; Jafarib, S.M.: Tensile loading rate effect on mechanical properties and failure mechanisms in open-hole carbon fiber reinforced polymer composites by acoustic emission approach. Compos. Part B 158, 448–458 (2019)

    Article  Google Scholar 

  37. Zhang, J.; Chaisombat, K.; He, S.; Wang, C.H.: Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Mater. Des. 36, 75–80 (2012)

    Article  Google Scholar 

  38. Ozsoy, N.; Mimaroglu, A.; Ozsoy, M.; Ozsoy, M.I.: Comparison of mechanical behaviour of carbon and glass fiber reinforced epoxy composites. Acta Phys. Pol. A 127, 1032–1034 (2015)

    Article  Google Scholar 

  39. Prabhakaran, R.T.D.; Andersen, T.L.; Markussen, C.M.; Madsen, B.; Lilholt H.: Tensile and compression properties of hybrid composites—a comparative study. In: Proceedings of the 19th International Conference on Composite Materials, Montreal (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Erbayrak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbayrak, E., Gumus, B.E., Yuncuoglu, E.U. et al. Investigations of Strain Rate Effects on the Mechanical Properties of Hybrid Composite Laminate Under Varying Temperatures. Arab J Sci Eng 45, 9709–9724 (2020). https://doi.org/10.1007/s13369-020-04903-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04903-x

Keywords

Navigation