Skip to main content
Log in

Evaluation of Minimum, Maximum and Optimum Source Temperature for Solar-Powered Adsorption Refrigeration System

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the utilization of solar thermal energy and environmentally friendly nature, globally there is a huge thrust toward the development of vapor adsorption refrigeration systems. Indeed, it is necessary to identify the minimum, maximum and optimum temperatures of heat source for solar-powered adsorption systems. With this objective, the presented paper focuses on the evaluation of lower, upper and optimum temperatures of the heat source to run the adsorption refrigeration system. Performance parameters, cooling capacity and coefficient of performance (COP), have been utilized to derive the limits of source (desorption) temperatures and applied to two different adsorbent–adsorbate pairs, namely Maxsorb III–ethanol and Maxsorb III– R134a. The adsorption and evaporator temperatures considered for the analysis are 25–40 °C and − 10–10 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Abbreviations

A :

Adsorption potential (J/mol)

C :

Specific adsorbance

C p :

Specific heat at constant pressure (kJ/kg K)

E :

Characteristic energy of adsorption system (J/mol)

h :

Specific enthalpy (kJ/kg)

:

Mass flow rate (kg/s)

m :

Mass (kg)

n :

Structural heterogeneity parameter

P :

Pressure (Pa)

Q :

Heat (kJ)

q :

Heat flow rate (kW)

R :

Universal gas constant (J/mol K)

T :

Temperature (°C)

V :

Compressor volume (m3)

W :

Power (kW)

Z :

Adsorbed volume (m3/kg)

Z o :

Limiting volume of adsorption (m3/kg)

η :

Efficiency

ρ :

Density (kg/ m3)

τ :

Time (s)

ʋ :

Specific volume (m3/kg)

a :

Point ‘a’ on adsorption cycle

ac:

Activated carbon

ad:

Adsorbate

ads:

Adsorption

al:

Aluminum

air:

Air

b :

Point ‘b’ on adsorption cycle

bo:

Boiling

c :

Point ‘c’ on adsorption cycle

com:

Compressor

cr:

Critical

d :

Point ‘d’ on adsorption cycle

des:

Desorption

eff:

Effective

f:

Fuel

fa:

Fuel and air mixture

ref:

Refrigerant

s:

Saturation

References

  1. Murthy, A.A.; Subiantoro, A.; Norris, S.; Fukuta, M.: A review on expanders and their performance in vapour compression refrigeration systems. Int. J. Refrig. 106, 427–446 (2019). https://doi.org/10.1016/j.ijrefrig.2019.06.019

    Article  Google Scholar 

  2. Rahim, M.A.: Performance and sensitivity analysis of a combined cycle gas turbine power plant by various inlet air-cooling systems. Proc. Inst. Mech. Eng. Part A J. Power Energy 226, 922–931 (2012). https://doi.org/10.1177/0957650912456657

    Article  Google Scholar 

  3. Hermes, N.: Energy and cost savings in household refrigerating appliances: a simulation-based design approach. Appl. Energy 88(9), 3051–3060 (2011). https://doi.org/10.1016/j.apenergy.2011.03.013

    Article  Google Scholar 

  4. Desideri, U.; Proietti, S.; Sdringola, P.: Solar-powered cooling systems: technical and economic analysis on industrial refrigeration and air-conditioning applications. Appl. Energy 86, 1376–1386 (2009). https://doi.org/10.1016/j.apenergy.2009.01.011

    Article  Google Scholar 

  5. Fernandes, M.S.; Brites, G.J.V.N.; Costa, J.J.; Gaspar, A.R.; Costa, V.A.F.: Review and future trends of solar adsorption refrigeration systems. Renew. Sustain. Energy Rev. 39, 102–123 (2014). https://doi.org/10.1016/j.rser.2014.07.081

    Article  Google Scholar 

  6. Ge, Y.T.; Tassou, S.A.; Chaer, I.; Suguartha, N.: Performance evaluation of a tri-generation system with simulation and experiment. Appl. Energy 86, 2317–2326 (2009). https://doi.org/10.1016/j.apenergy.2009.03.018

    Article  Google Scholar 

  7. Wang, L.W.; Wang, R.Z.; Oliveira, R.G.: A review on adsorption working pairs for refrigeration. Renew. Sustain. Energy Rev. 13, 518–534 (2009). https://doi.org/10.1016/J.RSER.2007.12.002

    Article  Google Scholar 

  8. Wang, D.C.; Li, Y.H.; Li, D.; Xia, Y.Z.; Zhang, J.P.: A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems. Renew. Sustain. Energy Rev. 14, 344–353 (2010). https://doi.org/10.1016/J.RSER.2009.08.001

    Article  Google Scholar 

  9. Hadj Ammar, M.A.; Benhaoua, B.; Bouras, F.: Thermodynamic analysis and performance of an adsorption refrigeration system driven by solar collector. Appl. Therm. Eng. 112, 1289–1296 (2017). https://doi.org/10.1016/j.applthermaleng.2016.09.119

    Article  Google Scholar 

  10. Wang, Y.; Li, M.; Ji, X.; Yu, Q.; Li, G.; Ma, X.: Experimental study of the effect of enhanced mass transfer on the performance improvement of a solar-driven adsorption refrigeration system. Appl. Energy 224, 417–425 (2018). https://doi.org/10.1016/j.apenergy.2018.05.017

    Article  Google Scholar 

  11. Hassan, H.Z.; Mohamad, A.A.; Al-Ansary, H.A.: Development of a continuously operating solar-driven adsorption cooling system: thermodynamic analysis and parametric study. Appl. Therm. Eng. 48, 332–341 (2012). https://doi.org/10.1016/j.applthermaleng.2012.04.040

    Article  Google Scholar 

  12. Hassan, H.Z.; Mohamad, A.A.: Thermodynamic analysis and theoretical study of a continuous operation solar-powered adsorption refrigeration system. Energy 61, 167–178 (2013). https://doi.org/10.1016/j.energy.2013.09.004

    Article  Google Scholar 

  13. Du, S.W.; Li, X.H.; Yuan, Z.X.; Du, C.X.; Wang, W.C.; Liu, Z.B.: Performance of solar adsorption refrigeration in system of SAPO-34 and ZSM-5 zeolite. Sol. Energy 138, 98–104 (2016). https://doi.org/10.1016/j.solener.2016.09.015

    Article  Google Scholar 

  14. Louajari, M.; Mimet, A.; Ouammi, A.: Study of the effect of finned tube adsorber on the performance of solar driven adsorption cooling machine using activated carbon–ammonia pair. Appl. Energy 88, 690–698 (2011). https://doi.org/10.1016/j.apenergy.2010.08.032

    Article  Google Scholar 

  15. Ji, X.; Li, M.; Fan, J.; Zhang, P.; Luo, B.; Wang, L.: Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system. Appl. Energy 113, 1293–1300 (2014). https://doi.org/10.1016/j.apenergy.2013.08.088

    Article  Google Scholar 

  16. Ogueke, N.V.; Anyanwu, E.E.: Design improvements for a collector/generator/adsorber of a solid adsorption solar refrigerator. Renew. Energy 33, 2428–2440 (2008). https://doi.org/10.1016/j.renene.2008.02.007

    Article  Google Scholar 

  17. Abu-Hamdeh, N.H.; Alnefaie, K.A.; Almitani, K.H.: Design and performance characteristics of solar adsorption refrigeration system using parabolic trough collector: experimental and statistical optimization technique. Energy Convers. Manag. 74, 162–170 (2013). https://doi.org/10.1016/j.enconman.2013.04.043

    Article  Google Scholar 

  18. Fadar, A.El; Mimet, A.; Pérez-García, M.: Modelling and performance study of a continuous adsorption refrigeration system driven by parabolic trough solar collector. Sol. Energy 83, 850–861 (2009). https://doi.org/10.1016/j.solener.2008.12.003

    Article  Google Scholar 

  19. Zhao, C.; Wang, Y.; Li, M.; Zhao, W.; Li, X.; Du, W.; Yu, Q.: Experimental study of a solar adsorption refrigeration system integrated with a compound parabolic concentrator based on an enhanced mass transfer cycle in Kunming, China. Sol. Energy 195, 37–46 (2020). https://doi.org/10.1016/j.solener.2019.11.056

    Article  Google Scholar 

  20. Bouzeffour, F.; Khelidj, B.; Tahar abbes, M.: Experimental investigation of a solar adsorption refrigeration system working with silicagel/water pair: a case study for Bou-Ismail solar data. Sol. Energy 131, 165–175 (2016). https://doi.org/10.1016/j.solener.2016.02.043

    Article  Google Scholar 

  21. Saha, B.B.; El-Sharkawy, I.I.; Chakraborty, A.; Koyama, S.; Banker, N.D.; Dutta, P.; Prasad, M.; Srinivasan, K.: Evaluation of minimum desorption temperatures of thermal compressors in adsorption refrigeration cycles. Int. J. Refrig. 29, 1175–1181 (2006). https://doi.org/10.1016/j.ijrefrig.2006.01.005

    Article  Google Scholar 

  22. Saha, B.B.; Chakraborty, A.; Koyama, S.; Yoon, S.H.; Mochida, I.; Kumja, M.Y.: Isotherms and thermodynamics for the adsorption of n-butane on pitch based activated carbon. Int. J. Heat Mass Transf. 51(7–8), 1582–1589 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.031

    Article  MATH  Google Scholar 

  23. Askalany, A.A.; Saha, B.B.; Ahmed, M.S.; Ismail, I.M.: Adsorption cooling system employing granular activated carbon-R134a pair for renewable energy applications. Int. J. Refrig. 36, 1037–1044 (2013). https://doi.org/10.1016/j.ijrefrig.2012.11.009

    Article  Google Scholar 

  24. UNEP: Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer, Kigali, 15 October 2016. (2016)

  25. Bell, I.H.; Domanski, P.A.; McLinden, M.O.; Linteris, G.T.: The hunt for nonflammable refrigerant blends to replace R-134a. Int. J. Refrig. 104, 484–495 (2019). https://doi.org/10.1016/j.ijrefrig.2019.05.035

    Article  Google Scholar 

  26. Panyam, V.R.; Kolla, V.S.; Palawat, L.; Sahu, A.; Banker, N.D.: Performance comparison of a vapor-adsorption cycle-based gas turbine inlet air cooling system for different refrigerants. Int. J. Air-Cond. Refrig. 26, 1850002 (2018). https://doi.org/10.1142/S2010132518500025

    Article  Google Scholar 

  27. Vaidhyanathan, A.; Banker, N.D.: Theoretical and experimental modeling of phase change material based space heating using solar energy. Int. J. Air-Cond. Refrig. (2020). https://doi.org/10.1142/s2010132520500169

    Article  Google Scholar 

  28. El-Sharkawy, I.I.; Saha, B.B.; Koyama, S.; He, J.; Ng, K.C.; Yap, C.: Experimental investigation on activated carbon–ethanol pair for solar powered adsorption cooling applications. Int. J. Refrig. 31, 1407–1413 (2008). https://doi.org/10.1016/J.IJREFRIG.2008.03.012

    Article  Google Scholar 

  29. Banker, N.D.; Srinivasan, K.; Prasad, M.: Performance analysis of activated carbon + HFC-134a adsorption coolers. Carbon 42, 117–127 (2004). https://doi.org/10.1016/J.CARBON.2003.10.006

    Article  Google Scholar 

  30. Reddy Panyam, V.; Banker, N.D.: Thermodynamic assessment of a gas turbine power plant integrated with an adsorption refrigeration system. Appl. Therm. Eng. 117, 577–583 (2017). https://doi.org/10.1016/J.APPLTHERMALENG.2017.02.034

    Article  Google Scholar 

  31. El-Sharkawy, I.I.; Uddin, K.; Miyazaki, T.; Saha, B.B.; Koyama, S.; Miyawaki, J.; Yoon, S.-H.: Adsorption of ethanol onto parent and surface treated activated carbon powders. Int. J. Heat Mass Transf. 73, 445–455 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.046

    Article  Google Scholar 

  32. Loh, W.S.: Experimental and theoretical studies of waste heat driven pressurized adsorption chillers. PhD Thesis, Natl. Univ. Singapore (2011)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin D. Banker.

Ethics declarations

Conflicts of interest

Not applicable.

Code Availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banker, N.D., Dandotiya, D., Morthala, S.V.R. et al. Evaluation of Minimum, Maximum and Optimum Source Temperature for Solar-Powered Adsorption Refrigeration System. Arab J Sci Eng 45, 9735–9745 (2020). https://doi.org/10.1007/s13369-020-04865-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04865-0

Keywords

Navigation