Skip to main content
Log in

Macro- and Micro-Properties of Engineered Cementitious Composites (ECCs) Incorporating Industrial Waste Materials: A Review

  • Review-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Engineered cementitious composites (ECCs) possessing strain-hardening behavior have been developed utilizing supplementary cementitious materials and fibers. The developed ECCs exhibit excellent performance in terms of mechanical and thermal properties and are highly durable. However, the latest trend is to use industrial waste materials (IWMs), as alkali-activated materials, in the development of ECCs. In this paper, a state-of-the-art review on the development of sustainable-ECCs utilizing IWMs is presented. The formulations of binders and fibers, used in the production of ECCs, are described. The effect of mixture composition on the mechanical properties, such as compressive and tensile strength, and durability of ECCs is discussed. In addition, the importance of micromechanics modeling for producing a strain-hardened ECC is presented. Further, the engineering applications of ECCs in structural and repair fields are discussed along with suggestions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Naqi, A.; Jang, J.G.: Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: a review. Sustainability 11(2), 537 (2019). https://doi.org/10.3390/su11020537

    Article  Google Scholar 

  2. CEMBUREAU: European Cement Association (CEMBUREAU), figures of world cement production 2014 by region and main countries. http://www.cembureau.be/sites/default/files/Worldcementproduction2014byregionandmaincountries.pdf (2017). Accessed 2017

  3. Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O.: Carbon dioxide emission from the global cement industry. Annu. Rev. Energy Environ. 26, 303–329 (2001). https://doi.org/10.1146/annurev.energy.26.1.303

    Article  Google Scholar 

  4. Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B.: Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics. Compos. Struct. 168, 402–427 (2017). https://doi.org/10.1016/j.compstruct.2017.01.085

    Article  Google Scholar 

  5. Provis, J.; Van Devente, J.: Geopolymers: structures, processing, properties and industrial applications. Woodhead Publishing, Cambridge (2009)

    Book  Google Scholar 

  6. Natali, A.; Manzi, S.; Bignozzi, M.C.: Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Proc. Eng. 21, 1124–1131 (2011). https://doi.org/10.1016/j.proeng.2011.11.2120

    Article  Google Scholar 

  7. Zhang, Z.; Yuvaraj, A.; Di, J.; Qian, S.: Matrix design of light weight, high strength, high ductility ECC. Constr. Build. Mater. 210, 188–197 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.159

    Article  Google Scholar 

  8. Singh, M.; Saini, B.; Chalak, H.D.: Performance and composition analysis of engineered cementitious composite (ECC)—a review. J. Build. Eng. 26, 100851 (2019). https://doi.org/10.1016/j.jobe.2019.100851

    Article  Google Scholar 

  9. Nematollahi, B.; Qiu, J.; Yang, E.H.; Sanjayan, J.: Microscale investigation of fiber-matrix interface properties of strain-hardening geopolymer composite. Ceram. Int. 43(17), 15616–15625 (2017). https://doi.org/10.1016/j.ceramint.2017.08.118

    Article  Google Scholar 

  10. Il Choi, J.; Il Song, K.; Song, J.K.; Lee, B.Y.: Composite properties of high-strength polyethylene fiber-reinforced cement and cementless composites. Compos. Struct. 138, 116–121 (2016). https://doi.org/10.1016/j.compstruct.2015.11.046

    Article  Google Scholar 

  11. Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A.: Strain hardening behavior of engineered geopolymer composites: effects of the activator combination. J. Aust. Ceram. Soc. 51(1), 54–60 (2015)

    Google Scholar 

  12. Huang, X.; Ranade, R.; Zhang, Q.; Ni, W.; Li, V.C.: Mechanical and thermal properties of green lightweight engineered cementitious composites. Constr. Build. Mater. 48, 954–960 (2013). https://doi.org/10.1016/j.conbuildmat.2013.07.104

    Article  Google Scholar 

  13. Xu, S.; Malik, M.A.; Qi, Z.; Huang, B.T.; Li, Q.; Sarkar, M.: Influence of the PVA fibers and SiO2 NPs on the structural properties of fly ash based sustainable geopolymer. Constr. Build. Mater. 164, 238–245 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.227

    Article  Google Scholar 

  14. Görhan, G.; Aslaner, R.; Şinik, O.: The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste. Compos. Part B Eng. 97, 329–335 (2016). https://doi.org/10.1016/j.compositesb.2016.05.019

    Article  Google Scholar 

  15. Li, V.C.: From micromechanics to structural engineering—design of cementitious composites for civil engineering applications. J. Struct. Mech. Earthq. Eng. 10, 37–48 (1994)

    Google Scholar 

  16. Li, V.C.; Lepech, M.D.; Wang, S.; Weimann, M.; Keoleian, G.A.: Development of green engineered cementitious composites for sustainable infrastructure systems. Adv. Mater. Res. 1020, 3–8 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1020.3

    Article  Google Scholar 

  17. Li, V.C.: Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure. Springer, Berlin (2019)

    Book  Google Scholar 

  18. Li, V.C.: High-performance and multifunctional cement-based composite material. Engineering 5(2), 250–260 (2019). https://doi.org/10.1016/j.eng.2018.11.031

    Article  Google Scholar 

  19. Tang, Z.; Li, W.; Hu, Y.; Zhou, J.L.; Tam, V.W.Y.: Review on designs and properties of multifunctional alkali-activated materials (AAMs). Constr. Build. Mater. 200, 474–489 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.157

    Article  Google Scholar 

  20. Ma, H.; Herbert, E.; Ohno, M.; Li, V.C.: Scale-linking model of self-healing and stiffness recovery in Engineered Cementitious Composites (ECC). Cem. Concr. Compos. 95, 1–9 (2019). https://doi.org/10.1016/j.cemconcomp.2018.10.006

    Article  Google Scholar 

  21. Zhu, Y.; Zhang, Z.; Chen, X.; Zou, D.; Guan, X.; Dong, B.: Non-destructive methods to evaluate the self-healing behavior of engineered cementitious composites (ECC). Constr. Build. Mater. 230, 116753 (2020). https://doi.org/10.1016/j.conbuildmat.2019.116753

    Article  Google Scholar 

  22. Yang, Y.; Lepech, M.D.; Yang, E.H.; Li, V.C.: Autogenous healing of engineered cementitious composites under wet-dry cycles. Cem. Concr. Res. 39(5), 382–390 (2009). https://doi.org/10.1016/j.cemconres.2009.01.013

    Article  Google Scholar 

  23. Zhang, Z.; Zhang, Q.; Li, V.C.: Multiple-scale investigations on self-healing induced mechanical property recovery of ECC. Cem. Concr. Compos. 103, 293–302 (2019). https://doi.org/10.1016/j.cemconcomp.2019.05.014

    Article  Google Scholar 

  24. Hou, T.; Lynch, J.P.: Tomographic imaging of crack damage in cementitious structural components. In: 4th International Conference on Earthquake Engineering, Paper No. 162. (2006)

  25. Liu, C.; Liu, G.; Ge, Z.; Guan, Y.; Cui, Z.; Zhou, J.: Mechanical and self-sensing properties of multiwalled carbon nanotube-reinforced ECCs. Adv. Mater. Sci. Eng. (2019). https://doi.org/10.1155/2019/2646012

    Article  Google Scholar 

  26. Zhao, A.; Yang, J.; Yang, E.H.: Self-cleaning engineered cementitious composites. Cem. Concr. Compos. 64, 74–83 (2015). https://doi.org/10.1016/j.cemconcomp.2015.09.007

    Article  Google Scholar 

  27. Cassar, L.: Photocatalysis of cementitious materials: Clean buildings and clean air. MRS Bull. 29(5), 328–331 (2004). https://doi.org/10.1557/mrs2004.99

    Article  Google Scholar 

  28. Zhu, Y.; Zhang, H.; Zhang, Z.; Dong, B.; Liao, J.: Monitoring the cracking behavior of engineered cementitious composites (ECC) and plain mortar by electrochemical impedance measurement. Constr. Build. Mater. 209, 195–201 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.132

    Article  Google Scholar 

  29. Li, V.C.: On engineered cementitious composites (ECC). A review of the material and its applications. J. Adv. Concr. Technol. 1(3), 215–230 (2003). https://doi.org/10.3151/jact.1.215

    Article  Google Scholar 

  30. Li, V.C.: Advances in ECC research. In: ACI Spec. Publ., pp. 373–400 (2002)

  31. Pakravan, H.R.; Ozbakkaloglu, T.: Synthetic fibers for cementitious composites: a critical and in-depth review of recent advances. Construction and Building Materials, vol. 207, pp. 491–518. Elsevier, New York (2019). https://doi.org/10.1016/j.conbuildmat.2019.02.078

    Chapter  Google Scholar 

  32. Yu, K.; Li, L.; Yu, J.; Wang, Y.; Ye, J.; Xu, Q.: Direct tensile properties of engineered cementitious composites: a review. Constr. Build. Mater. 165, 346–362 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.124

    Article  Google Scholar 

  33. Thong, C.C.; Teo, D.C.L.; Ng, C.K.: Application of polyvinyl alcohol (PVA) in cement-based composite materials: a review of its engineering properties and microstructure behavior. Constr. Build. Mater. 107, 172–180 (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.188

    Article  Google Scholar 

  34. Nedeljković, M.; Luković, M.; van Breugel, K.; Hordijk, D.; Ye, G.: Development and application of an environmentally friendly ductile alkali-activated composite. J. Clean. Prod. 180, 524–538 (2018). https://doi.org/10.1016/j.jclepro.2018.01.162

    Article  Google Scholar 

  35. Ding, C.; Guo, L.; Chen, B.; Xu, Y.; Cao, Y.; Fei, C.: Micromechanics theory guidelines and method exploration for surface treatment of PVA fibers used in high-ductility cementitious composites. Constr. Build. Mater. 196, 154–165 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.118

    Article  Google Scholar 

  36. Lee, B.Y.; Cho, C.G.; Lim, H.J.; Song, J.K.; Yang, K.H.; Li, V.C.: Strain hardening fiber reinforced alkali-activated mortar: a feasibility study. Constr. Build. Mater. 37, 15–20 (2012). https://doi.org/10.1016/j.conbuildmat.2012.06.007

    Article  Google Scholar 

  37. Nematollahi, B.; Sanjayan, J.; Uddin, F.; Shaikh, A.: Comparative deflection hardening behavior of short fiber reinforced geopolymer composites. Constr. Build. Mater. 70, 54–64 (2014). https://doi.org/10.1016/j.conbuildmat.2014.07.085

    Article  Google Scholar 

  38. Pan, Z.; Wu, C.; Liu, J.; Wang, W.; Liu, J.: Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Constr. Build. Mater. 78, 397–404 (2015). https://doi.org/10.1016/j.conbuildmat.2014.12.071

    Article  Google Scholar 

  39. Nematollahi, B.; Sanjayan, J.; Qiu, J.; Yang, E.H.: High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: a micromechanics-based investigation. Arch. Civ. Mech. Eng. 17(3), 555–563 (2017). https://doi.org/10.1016/j.acme.2016.12.005

    Article  Google Scholar 

  40. Yu, K.; Yu, J.; Dai, J.; Lu, Z.; Shah, S.P.: Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers. Constr. Build. Mater. 158, 217–227 (2018)

    Article  Google Scholar 

  41. Yu, J.; Yao, J.; Lin, X.; Li, H.: Tensile performance of sustainable strain-hardening cementitious composites with hybrid PVA and recycled PET fibers. Cem. Concr. Res. (2018). https://doi.org/10.1016/j.cemconres.2018.02.013

    Article  Google Scholar 

  42. Shaikh, F.U.A.: Review of mechanical properties of short fibre reinforced geopolymer composites. Construction and Building Materials, vol. 43, pp. 37–49. Elsevier, New York (2013)

    Google Scholar 

  43. Girgin, Z.C.: Effect of slag, nano clay and metakaolin on mechanical performance of basalt fibre cementitious composites. Constr. Build. Mater. 192, 70–84 (2018)

    Article  Google Scholar 

  44. Singh, S.B.; Munjal, P.: Mechanical properties of PVA and polyester fibers based engineered cementitious composites. Recent Advances in Structural Engineering, vol. 1, pp. 715–728. Springer, Singapore (2019)

    Chapter  Google Scholar 

  45. Zhang, D.; Yu, J.; Wu, H.; Jaworska, B.; Ellis, B.R.; Li, V.C.: Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC). Compos. B Eng. 184, 107741 (2019)

    Article  Google Scholar 

  46. Ali, M.A.E.M.; Soliman, A.M.; Nehdi, M.L.: Hybrid-fiber reinforced engineered cementitious composite under tensile and impact loading. Mater. Des. 117, 139–149 (2017). https://doi.org/10.1016/j.matdes.2016.12.047

    Article  Google Scholar 

  47. Soufeiani, L.; Raman, S.N.; Zamin, M.; Jumaat, B.; Johnson, U.: Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading—a review. Eng. Struct. 124, 405–417 (2016). https://doi.org/10.1016/j.engstruct.2016.06.029

    Article  Google Scholar 

  48. Xu, S.; Lyu, Y.; Xu, S.; Li, Q.: Enhancing the initial cracking fracture toughness of steel-polyvinyl alcohol hybrid fibers ultra high toughness cementitious composites by incorporating multi-walled carbon nanotubes. Constr. Build. Mater. 195, 269–282 (2019). https://doi.org/10.1016/j.conbuildmat.2018.10.133

    Article  Google Scholar 

  49. Yu, J.; Chen, Y.; Leung, C.K.Y.: Mechanical performance of strain-hardening cementitious composites (SHCC) with hybrid polyvinyl alcohol and steel fibers. Compos. Struct. 226, 111198 (2019). https://doi.org/10.1016/j.compstruct.2019.111198

    Article  Google Scholar 

  50. Wang, Q.; Yi, Y.; Ma, G.; Luo, H.: Hybrid effects of steel fibers, basalt fibers and calcium sulfate on mechanical performance of PVA-ECC containing high-volume fly ash. Cem. Concr. Compos. 97, 357–368 (2019). https://doi.org/10.1016/j.cemconcomp.2019.01.009

    Article  Google Scholar 

  51. Lu, C.; Leung, C.K.Y.: Theoretical evaluation of fiber orientation and its effects on mechanical properties in Engineered Cementitious Composites (ECC) with various thicknesses. Cem. Concr. Res. 95, 240–246 (2017). https://doi.org/10.1016/j.cemconres.2017.02.024

    Article  Google Scholar 

  52. Zhang, Z.; Yao, X.; Zhu, H.: Potential application of geopolymers as protection coatings for marine concrete II. Microstructure and anticorrosion mechanism. Appl. Clay Sci. 49(1–2), 7–12 (2010)

    Article  Google Scholar 

  53. Zhang, Z.; Yao, X.; Zhu, H.: Potential application of geopolymers as protection coatings for marine concrete I. Basic properties. Appl. Clay Sci. 49(1–2), 1–6 (2010)

    Google Scholar 

  54. Zhang, Z.; Yao, X.; Wang, H.: Potential application of geopolymers as protection coatings for marine concrete III. Field experiment. Appl. Clay Sci. 67–68, 57–60 (2012)

    Article  Google Scholar 

  55. Bernal, S.; De Gutierrez, R.; Delvasto, S.; Rodriguez, E.: Performance of an alkali-activated slag concrete reinforced with steel fibers. Constr. Build. Mater. 24(2), 208–214 (2010)

    Article  Google Scholar 

  56. Li, W.; Xu, J.: Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater. Sci. Eng. A 513(C), 145–153 (2009)

    Google Scholar 

  57. Puertas, F.; Gil-Maroto, A.; Palacios, M.; Amat, T.: Alkali-activated slag mortars reinforced with AR glassfibre. Performance and properties. Mater. Construcción 56(283), 79–90 (2006)

    Google Scholar 

  58. Nematollahi, B.; et al.: Tensile strain hardening behavior of PVA fiber-reinforced engineered geopolymer composite. J. Mater. Civ. Eng. 27(10), 1–12 (2015)

    Article  MathSciNet  Google Scholar 

  59. Nematollahi, B.; Sanjayan, J.: Influence of type of fiber on tensile performance of one-part ‘dry-mix’ strain hardening geopolymer composite (SHGC). In: Proc. 11th fib Int. PhD Symp. Civ. Eng. FIB 2016 (2016)

  60. Alcaide, J.S.; Alcocel, E.G.; Puertas, F.; Lapuente, R.; Garcs, P.: Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Constr. 57(288), 33–48 (2007)

    Google Scholar 

  61. Choi, S.; Choi, J.; Song, J.; Yeon, B.: Rheological and mechanical properties of fiber-reinforced alkali-activated composite. Constr. Build. Mater. 96, 112–118 (2015)

    Article  Google Scholar 

  62. Zhang, Z.; Zhang, Q.: Matrix tailoring of Engineered Cementitious Composites (ECC) with non-oil-coated, low tensile strength PVA fiber. Constr. Build. Mater. 161, 420–431 (2018)

    Article  Google Scholar 

  63. Il Choi, J.; Lee, B.Y.; Ranade, R.; Li, V.C.; Lee, Y.: Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite. Cem. Concr. Compos. 70, 153–158 (2016)

    Article  Google Scholar 

  64. Gao, S.; Wang, Z.; Wang, W.; Qiu, H.: Effect of shrinkage-reducing admixture and expansive agent on mechanical properties and drying shrinkage of Engineered Cementitious Composite (ECC). Constr. Build. Mater. 179, 172–185 (2018)

    Article  Google Scholar 

  65. Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A.: Matrix design of strain hardening fiber reinforced engineered geopolymer composite. Compos. Part B Eng. 89, 253–265 (2016)

    Article  Google Scholar 

  66. Ohno, M.; Li, V.C.: An integrated design method of Engineered Geopolymer Composite. Cem. Concr. Compos. 88, 73–85 (2018)

    Article  Google Scholar 

  67. Ling, Y.; Wang, K.; Li, W.; Shi, G.; Lu, P.: Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites. Compos. Part B Eng. 164, 747–757 (2019)

    Article  Google Scholar 

  68. Puertas, F.; Alonso, M.M.; Gismera, S.; Lanzón, M.; Blanco-Varela, M.T.: Rheology of cementitious materials: Alkali-activated materials or geopolymers. In: MATEC Web Conf., vol. 149 (2019)

  69. Neupane, K.: Fly ash and GGBFS based powder-activated geopolymer binders: a viable sustainable alternative of portland cement in concrete industry. Mech. Mater. 103, 110–122 (2016)

    Article  Google Scholar 

  70. Wardhono, A.; Gunasekara, C.; Law, D.W.; Setunge, S.: Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes. Constr. Build. Mater. 143, 272–279 (2017)

    Article  Google Scholar 

  71. Wu, Y.; et al.: Geopolymer, green alkali activated cementitious material: synthesis, applications and challenges. Construction and Building Materials, vol. 224, pp. 930–949. Elsevier, New York (2019)

    Google Scholar 

  72. Okoye, F.N.: Geopolymer binder: a veritable alternative to Portland cement. Mater. Today Proc. 4(4), 5599–5604 (2017)

    Article  Google Scholar 

  73. Nematollahi, B.; Sanjayan, J.: Ambient temperature cured one-part engineered geopolymer composite: a sustainable alternative to engineered cementitious composite. In: 9th RILEM International Symposium on Fiber Reinforced Concrete - BEFIB 2016 (2016)

  74. Salami, B.A.; Megat Johari, M.A.; Ahmad, Z.A.; Maslehuddin, M.: Durability performance of palm oil fuel ash-based engineered alkaline-activated cementitious composite (POFA-EACC) mortar in sulfate environment. Constr. Build. Mater. 131, 229–244 (2017)

    Article  Google Scholar 

  75. Slaty, F.; Khoury, H.; Rahier, H.; Wastiels, J.: Durability of alkali activated cement produced from kaolinitic clay. Appl. Clay Sci. 104, 229–237 (2015)

    Article  Google Scholar 

  76. Zhuang, X.Y.; et al.: Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 125, 253–267 (2016)

    Article  Google Scholar 

  77. Sakulich, A.R.: Reinforced geopolymer composites for enhanced material greenness and durability. Sustain. Cities Soc. 1(4), 195–210 (2011)

    Article  Google Scholar 

  78. Nematollahi, B.; Sanjayan, J.; Qiu, J.; Yang, E.H.: Micromechanics-based investigation of a sustainable ambient temperature cured one-part strain hardening geopolymer composite. Constr. Build. Mater. 131, 552–563 (2017)

    Article  Google Scholar 

  79. Khankhaje, E.; et al.: On blended cement and geopolymer concretes containing palm oil fuel ash. Mater. Des. 89, 385–398 (2016)

    Article  Google Scholar 

  80. Salami, B.A.; Megat Johari, M.A.; Ahmad, Z.A.; Maslehuddin, M.: Impact of added water and superplasticizer on early compressive strength of selected mixtures of palm oil fuel ash-based engineered geopolymer composites. Constr. Build. Mater. 109, 198–206 (2016)

    Article  Google Scholar 

  81. Tuyan, M.; Andiç-Çakir, Ö.; Ramyar, K.: Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Compos. Part B Eng. 135, 242–252 (2018)

    Article  Google Scholar 

  82. Yu, K.Q.; Zhu, W.J.; Ding, Y.; Lu, Z.D.; Tao Yu, J.; Xiao, J.Z.: Micro-structural and mechanical properties of ultra-high performance engineered cementitious composites (UHP-ECC) incorporation of recycled fine powder (RFP). Cem. Concr. Res. 124, 105813 (2019)

    Article  Google Scholar 

  83. Li, J.; Yang, E.: Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines. Cem. Concr. Compos. 78, 33–42 (2017)

    Article  Google Scholar 

  84. Noorvand, H.; Arce, G.; Hassan, M.; Rupnow, T.: Investigation of the mechanical properties of engineered cementitious composites with low fiber content and with crumb rubber and high fly ash content. Transp. Res. Rec. 196, 195–203 (2019)

    Google Scholar 

  85. Aslani, F.; Wang, L.: Fabrication and characterization of an engineered cementitious composite with enhanced fire resistance performance. J. Clean. Prod. 221, 202–214 (2019)

    Article  Google Scholar 

  86. Turk, K.; Nehdi, M.L.: Coupled effects of limestone powder and high-volume fly ash on mechanical properties of ECC. Constr. Build. Mater. 164, 185–192 (2018)

    Article  Google Scholar 

  87. Yang, T.; Zhu, H.; Zhang, Z.; Gao, X.; Zhang, C.; Wu, Q.: Effect of fly ash microsphere on the rheology and microstructure of alkali-activated fly ash/slag pastes. Cem. Concr. Res. 109, 198–207 (2018)

    Article  Google Scholar 

  88. Lee, S.W.; Oh, C.L.; Zain, M.R.M.; Yahya, N.A.; Rahman, A.A.: Mechanical performances of green engineered cementitious composites incorporating various types of sand. Key Eng. Mater. 821, 512–517 (2019)

    Article  Google Scholar 

  89. Bapat, J.D.: Mineral Admixtures in Cement and Concrete. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  90. Liu, Y.; Zhou, X.; Lv, C.; Yang, Y.; Liu, T.: Use of silica fume and GGBS to improve frost resistance of ECC with high-volume fly ash. Adv. Civ. Eng. 2018, 11 (2018)

    Google Scholar 

  91. Aslani, F.; Wang, L.; Zheng, M.: The effect of carbon nanofibers on fresh and mechanical properties of lightweight engineered cementitious composite using hollow glass microspheres. J. Compos. Mater. 53(17), 2447–2464 (2019)

    Article  Google Scholar 

  92. de Costa, F.B.P.; Righi, D.P.; Graeff, A.G.; de Silva Filho, L.C.P.: Experimental study of some durability properties of ECC with a more environmentally sustainable rice husk ash and high tenacity polypropylene fibers. Constr. Build. Mater. 213, 505–513 (2019)

    Article  Google Scholar 

  93. Safiuddin, M.; Salam, M.A.; Jumaat, M.Z.: Utilization of palm oil fuel ash in concrete: a review. J. Civ. Eng. Manag. 17(2), 234–247 (2011)

    Article  Google Scholar 

  94. Payá, J.; Monzó, J.; Borrachero, M.V.; Tashima, M.M.: Reuse of aluminosilicate industrial waste materials in the production of alkali-activated concrete binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, pp. 487–518. Woodhead Publishing Limited, Cambridge (2015)

    Chapter  Google Scholar 

  95. Ahmad, S.; Hakeem, I.; Maslehuddin, M.: Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand. Sci. World J. 2014, 1–8 (2014)

    Google Scholar 

  96. Kim, H.K.; Lee, H.K.: Coal bottom ash in field of civil engineering: a review of advanced applications and environmental considerations. KSCE J. Civ. Eng. 19(6), 1802–1818 (2015)

    Article  Google Scholar 

  97. Bang, J.W.; Ganesh Prabhu, G.; Il Jang, Y.; Kim, Y.Y.: Development of ecoefficient engineered cementitious composites using supplementary cementitious materials as a binder and bottom ash aggregate as fine aggregate. Int. J. Polym. Sci. (2015). https://doi.org/10.1155/2015/681051

  98. Huang, X.; Ranade, R.; Ni, W.; Li, V.C.: Development of green engineered cementitious composites using iron ore tailings as aggregates. Constr. Build. Mater. 44, 757–764 (2013)

    Article  Google Scholar 

  99. Al-Gemeel, A.N.; Zhuge, Y.; Youssf, O.: Use of hollow glass microspheres and hybrid fibres to improve the mechanical properties of engineered cementitious composite. Constr. Build. Mater. 171, 858–870 (2018)

    Article  Google Scholar 

  100. Ismail, M.K.; Hassan, A.A.A.; Lachemi, M.: Performance of self-consolidating engineered cementitious composite under drop-weight impact loading. J. Mater. Civ. Eng. 31(3), 1–11 (2019)

    Article  Google Scholar 

  101. Ismail, M.K.; Hassan, A.A.A.; Lachemi, M.: Abrasion resistance of self-consolidating engineered cementitious composites developed with different mixture compositions. ACI Mater. J. 116, 27–38 (2019)

    Google Scholar 

  102. Mohammed, B.S.; Achara, B.E.; Nuruddin, M.F.; Yaw, M.; Zulke, M.Z.: Properties of nano-silica-modified self-compacting engineered cementitious composites. J. Clean. Prod. 162, 1225–1238 (2017)

    Article  Google Scholar 

  103. Achara, B.E.; Mohammed, B.S.; Liew, M.S.: Bond behaviour of nano-silica-modified self-compacting engineered cementitious composite using response surface methodology. Constr. Build. Mater. 224, 796–814 (2019)

    Article  Google Scholar 

  104. Mohammed, B.S.; Achara, B.E.; Liew, M.S.; Alaloul, W.S.; Khed, V.C.: Effects of elevated temperature on the tensile properties of NS-modified self-consolidating engineered cementitious composites and property optimization using response surface methodology (RSM). Constr. Build. Mater. 206, 449–469 (2019)

    Article  Google Scholar 

  105. Xu, M.; Bao, Y.; Wu, K.; Shi, H.; Guo, X.; Li, V.C.: Multiscale investigation of tensile properties of a TiO2-doped engineered cementitious composite. Constr. Build. Mater. 209, 485–491 (2019)

    Article  Google Scholar 

  106. Jiangtao, Y.: Feasibility of using seawater to produce ultra-high ductile cementitious composite for construction without steel reinforcement. Struct. Concr. 20, 774–785 (2019)

    Article  Google Scholar 

  107. Zhou, Y.; Xi, B.; Sui, L.; Zheng, S.; Xing, F.; Li, L.: Development of high strain-hardening lightweight engineered cementitious composites: design and performance. Cem. Concr. Compos. 104, 103370 (2019)

    Article  Google Scholar 

  108. Zhang, Z.; Ding, Y.; Qian, S.: Influence of bacterial incorporation on mechanical properties of engineered cementitious composites (ECC). Constr. Build. Mater. 196, 195–203 (2019)

    Article  Google Scholar 

  109. Richard, A.; Krithika, P.: An experimental investigation of self-healing property on ECC with PP and PVA fibers using bacteria under different exposure. Int. J. Innov. Technol. Explor. Eng. 8(7), 2278–3075 (2019)

    Google Scholar 

  110. Huang, B.; Yu, J.; Wu, J.; Dai, J.; Leung, C.K.: Seawater sea-sand Engineered Cementitious Composites (SS-ECC) for marine and coastal applications. Compos. Commun. (2020). https://doi.org/10.1016/j.coco.2020.04.019

    Article  Google Scholar 

  111. Righi, D.P.; Bianchi, F.; Costa, P.; Graeff, Â.G.; Carlos, L.; Filho, S.: Tensile behaviour and durability issues of engineered cementitious composites with rice husk ash. Matéria (Rio Janeiro). (2017). https://doi.org/10.1590/s1517-707620170002.0182

  112. Altwair, N.M.; Megat Johari, M.A.; Saiyid Hashim, S.F.: Flexural performance of green engineered cementitious composites containing high volume of palm oil fuel ash. Constr. Build. Mater. 37, 518–525 (2012)

    Article  Google Scholar 

  113. Siad, H.; et al.: Influence of limestone powder on mechanical, physical and self-healing behavior of Engineered Cementitious Composites. Constr. Build. Mater. 99, 1–10 (2015)

    Article  Google Scholar 

  114. Yu, J.; Wu, H.L.; Leung, C.K.Y.: Feasibility of using ultrahigh-volume limestone-calcined clay blend to develop sustainable medium-strength Engineered Cementitious Composites (ECC). J. Clean. Prod. 262, 121343 (2020). https://doi.org/10.1016/j.jclepro.2020.121343

    Article  Google Scholar 

  115. Turk, K.; Demirhan, S.: The mechanical properties of engineered cementitious composites containing limestone powder replaced by microsilica sand. Can. J. Civ. Eng. 40(2), 151–157 (2013)

    Article  Google Scholar 

  116. Siad, H.; Lachemi, M.; Şahmaran, M.; Hossain, K.M.A.: Potential for using waste recycled glass in engineered cementitious composites. Am. Concr. Institute, ACI Spec. Publ., vol. 2017-January no. SP 320, pp. 408–420 (2017)

  117. Adesina, A.; Das, S.: Mechanical performance of engineered cementitious composite incorporating glass as aggregates. J. Clean. Prod. 260, 121113 (2020). https://doi.org/10.1016/j.jclepro.2020.121113

    Article  Google Scholar 

  118. Ohno, M.; Li, V.C.: A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites. Constr. Build. Mater. 57, 163–168 (2014)

    Article  Google Scholar 

  119. Li Kan, L.; Xin Shi, R.; Zhu, J.: Effect of fineness and calcium content of fly ash on the mechanical properties of Engineered Cementitious Composites (ECC). Constr. Build. Mater. 209, 476–484 (2019)

    Article  Google Scholar 

  120. Zhu, Y.; Zhang, Z.; Yao, Y.; Guan, X.; Yang, Y.: Effect of water-curing time on the mechanical properties of engineered cementitious composites. J. Mater. Civ. Eng. 28(11), 1–6 (2016)

    Article  Google Scholar 

  121. Wu, H.L.; Yu, J.; Zhang, D.; Zheng, J.X.; Li, V.C.: Effect of morphological parameters of natural sand on mechanical properties of engineered cementitious composites. Cem. Concr. Compos. 100, 108–119 (2019)

    Article  Google Scholar 

  122. Guan, X.; Li, Y.; Liu, T.; Zhang, C.; Li, H.; Ou, J.: An economical ultra-high ductile engineered cementitious composite with large amount of coarse river sand. Constr. Build. Mater. 201, 461–472 (2019)

    Article  Google Scholar 

  123. Siad, H.; Lachemi, M.; Ismail, M.K.; Sherir, M.A.A.; Sahmaran, M.; Hassan, A.A.A.: Effect of rubber rggregate and binary mineral admixtures on long-term properties of structural engineered cementitious composites. J. Mater. Civ. Eng. 31(11), 1–15 (2019)

    Article  Google Scholar 

  124. Nematollahi, B.; Qiu, J.; Yang, E.H.; Sanjayan, J.: Micromechanics constitutive modelling and optimization of strain hardening geopolymer composite. Ceram. Int. 43(8), 5999–6007 (2017)

    Article  Google Scholar 

  125. Nematollahi, B.; Sanjayan, J.G.; Shaikh, F.U.A.: Influence of matrix related parameters on strain hardening behavior of engineered geopolymer composite (EGC). In: 27th Biennial National Conference of the Concrete Institute of Australia in conjunction with the 69th RILEM Week (2015)

  126. Kanda, T.; Li, V.C.: Practical design criteria for saturated pseudo strain hardening behavior in ECC. J. Adv. Concr. Technol. 4(1), 59–72 (2006)

    Article  Google Scholar 

  127. Lu, C.; Li, V.C.; Leung, C.K.Y.: Flaw characterization and correlation with cracking strength in Engineered Cementitious Composites (ECC). Cem. Concr. Res. 107, 64–74 (2018)

    Article  Google Scholar 

  128. Arain, M.F.; Wang, M.; Chen, J.; Zhang, H.: Study on PVA fiber surface modification for strain-hardening cementitious composites (PVA-SHCC). Constr. Build. Mater. 197, 107–116 (2019)

    Article  Google Scholar 

  129. Arain, M.F.; Wang, M.; Chen, J.; Zhang, H.: Experimental and numerical study on tensile behavior of surface modified PVA fiber reinforced strain-hardening cementitious composites (PVA-SHCC). Constr. Build. Mater. 217, 403–415 (2019)

    Article  Google Scholar 

  130. Komara, I.; Tambusay, A.; Sutrisno, W.; Suprobo, P.: Engineered cementitious composites an innovative durable material: a review. ARPN J. Eng. Appl. Sci. 14(4), 822–833 (2019)

    Google Scholar 

  131. Puertas, F.; Amat, T.; Fernández-Jiménez, A.; Vázquez, T.: Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res. 33(12), 2031–2036 (2003)

    Article  Google Scholar 

  132. Şahmaran, M.; Li, V.C.: Engineered cementitious composites: Can composites be accepted as crack-free concrete? Transp. Res. Rec. 2164, 1–8 (2010)

    Article  Google Scholar 

  133. Yildirim, G.; Keskin, Ö.K.; Keskin, S.B.I.; Şahmaran, M.; Lachemi, M.: A review of intrinsic self-healing capability of engineered cementitious composites: recovery of transport and mechanical properties. Constr. Build. Mater. 101, 10–21 (2015)

    Article  Google Scholar 

  134. Wagner, C.; Villmann, B.; Slowik, V.; Mechtcherine, V.: Water permeability of cracked strain-hardening cement-based composites. Cem. Concr. Compos. 82, 234–241 (2017)

    Article  Google Scholar 

  135. Wagner, C.; Villmann, B.; Slowik, V.; Mechtcherine, V.: Capillary absorption of cracked strain-hardening cement-based composites. Cem. Concr. Compos. 97, 239–247 (2019)

    Article  Google Scholar 

  136. Lepech, M.D.; Li, V.C.: Water permeability of engineered cementitious composites. Cem. Concr. Compos. 31(10), 744–753 (2009)

    Article  Google Scholar 

  137. Liu, J.; Tan, K.H.: Mechanism of PVA fibers in mitigating explosive spalling of engineered cementitious composite at elevated temperature. Cem. Concr. Compos. 93(July), 235–245 (2018)

    Article  Google Scholar 

  138. Sahmaran, M.; Li, M.; Li, V.C.: Transport properties of engineered cementitious composites under chloride exposure. ACI Mater. J. 104(6), 604–611 (2007)

    Google Scholar 

  139. Sahmaran, M.; Li, V.C.; Andrade, C.: Corrosion resistance performance of steel-reinforced engineered cementitious composite beams. ACI Mater. J. 105, 243–250 (2009)

    Google Scholar 

  140. Miyazato, S.; Hiraishi, Y.: Transport properties and steel corrosion in ductile fiber reinforced cement composites. In: Proceedings of the 11th International Conference on Fracture, pp. 1500–5 (2005)

  141. Tian, J.; et al.: Investigation of damage behaviors of ECC-to-concrete interface and damage prediction model under salt freeze-thaw cycles. Constr. Build. Mater. 226, 238–249 (2019)

    Article  Google Scholar 

  142. Tian, J.; et al.: Investigation of interface shear properties and mechanical model between ECC and concrete. Constr. Build. Mater. 223, 12–27 (2019)

    Article  Google Scholar 

  143. Meng, D.; Lee, C.K.; Zhang, Y.X.: Flexural and shear behaviours of plain and reinforced polyvinyl alcohol-engineered cementitious composite beams. Eng. Struct. 151, 261–272 (2017)

    Article  Google Scholar 

  144. Sui, L.; Zhong, Q.; Yu, K.; Xing, F.; Li, P.; Zhou, Y.: Flexural fatigue properties of ultra-high performance engineered cementitious composites (UHP-ECC) reinforced by polymer fibers”. Polymers (Basel) 10(8), 892 (2018)

    Article  Google Scholar 

  145. Meng, D.; Zhang, Y.X.; Lee, C.K.: Flexural fatigue behaviour of steel reinforced PVA-ECC beams. Constr. Build. Mater. 221, 384–398 (2019)

    Article  Google Scholar 

  146. Al-Majidi, M.H.; Lampropoulos, A.P.; Cundy, A.B.; Tsioulou, O.T.; Al-Rekabi, S.: A novel corrosion resistant repair technique for existing reinforced concrete (RC) elements using polyvinyl alcohol fibre reinforced geopolymer concrete (PVAFRGC). Constr. Build. Mater. 164, 603–619 (2018)

    Article  Google Scholar 

  147. Qiao, Z.; Pan, Z.; Xue, W.; Meng, S.: Experimental study on flexural behavior of ECC/RC composite beams with U-shaped ECC permanent formwork. Front. Struct. Civ. Eng. 13(5), 1271–1287 (2019)

    Article  Google Scholar 

  148. Shang, X.; Yu, J.; Li, L.; Lu, Z.: Strengthening of RC structures by using engineered cementitious composites: a review. Sustainability 11(12), 3384 (2019)

    Article  Google Scholar 

  149. Gao, S.; Zhao, X.; Qiao, J.; Guo, Y.; Hu, G.: Study on the bonding properties of Engineered Cementitious Composites (ECC) and existing concrete exposed to high temperature. Constr. Build. Mater. 196, 330–344 (2019)

    Article  Google Scholar 

  150. Jin, Q.; Li, V.C.: Development of lightweight engineered cementitious composite for durability enhancement of tall concrete wind towers. Cem. Concr. Compos. 96, 87–94 (2017)

    Article  Google Scholar 

  151. Jin, Q.; Li, V.C.: Structural and durability assessment of ECC/concrete dual-layer system for tall wind turbine towers. Eng. Struct. 196, 109338 (2019)

    Article  Google Scholar 

  152. Huang, B.T.; Li, Q.H.; Xu, S.L.; Zhang, L.: Static and fatigue performance of reinforced concrete beam strengthened with strain-hardening fiber-reinforced cementitious composite. Eng. Struct. 199, 109576 (2019)

    Article  Google Scholar 

  153. Wang, G.; et al.: Shear behaviors of RC beams externally strengthened with engineered cementitious composite layers. Materials (Basel) 12(13), 2163 (2019)

    Article  Google Scholar 

  154. Chen, Y.; Yu, J.; Leung, C.K.Y.: Use of high strength Strain-Hardening Cementitious Composites for flexural repair of concrete structures with significant steel corrosion. Constr. Build. Mater. 167, 325–337 (2018)

    Article  Google Scholar 

  155. Fakhri, H.; Ragalwar, K.A.; Ranade, R.: On the use of Strain-Hardening Cementitious Composite covers to mitigate corrosion in reinforced concrete structures. Constr. Build. Mater. 224, 850–862 (2019)

    Article  Google Scholar 

  156. Kabir, M.I.; Lee, C.K.; Rana, M.M.; Zhang, Y.X.: Flexural and bond-slip behaviours of engineered cementitious composites encased steel composite beams. J. Constr. Steel Res. 157, 229–244 (2019)

    Article  Google Scholar 

  157. Bai, L.; Yu, J.; Zhang, M.; Zhou, T.: Experimental study on the bond behavior between H-shaped steel and engineered cementitious composites. Constr. Build. Mater. 196, 214–232 (2019)

    Article  Google Scholar 

  158. Hou, L.; Xu, R.; Chen, D.; Xu, S.; Aslani, F.: Seismic behavior of reinforced engineered cementitious composite members and reinforced concrete/engineered cementitious composite members: a review. Struct. Concr. 21(1), 199–219 (2020). https://doi.org/10.1002/suco.201800269

    Article  Google Scholar 

  159. Li, X.; Zhou, X.; Tian, Y.; Li, M.: A modified cyclic constitutive model for engineered cementitious composites. Eng. Struct. 179, 398–411 (2019)

    Article  Google Scholar 

  160. Deng, M.; Dong, Z.; Ma, P.: Cyclic loading tests of flexural-failure dominant URM walls strengthened with engineered cementitious composite. Eng. Struct. 194, 173–182 (2019)

    Article  Google Scholar 

  161. Wu, C.; Pan, Z.; Su, R.K.L.; Leung, C.K.Y.; Meng, S.: Seismic behavior of steel reinforced ECC columns under constant axial loading and reversed cyclic lateral loading. Mater. Struct. Constr. 50(1), 78 (2017)

    Article  Google Scholar 

  162. Zhang, Y.; Deng, M.; Dong, Z.: Seismic response and shear mechanism of engineered cementitious composite (ECC) short columns. Eng. Struct. 192, 296–304 (2019)

    Article  Google Scholar 

  163. Zhang, R.; et al.: Cyclic response of RC composite bridge columns with precast PP-ECC jackets in the region of plastic hinges. Compos. Struct. 221, 1–10 (2019)

    Article  Google Scholar 

  164. Deng, M.; Pan, J.; Sun, H.: Bond behavior of deformed bar embedded in Engineered Cementitious Composites under cyclic loading. Constr. Build. Mater. 197, 164–174 (2019)

    Article  Google Scholar 

  165. Gou, S.; Ding, R.; Fan, J.; Nie, X.; Zhang, J.: Experimental study on seismic performance of precast LSECC/RC composite joints with U-shaped LSECC beam shells. Eng. Struct. 189, 618–634 (2019)

    Article  Google Scholar 

  166. Tariq, H.; Jampole, E.A.; Bandelt, M.J.: Fiber-hinge modeling of engineered cementitious composite flexural members under large deformations. Eng. Struct. 182, 62–78 (2019)

    Article  Google Scholar 

  167. Abouhussien, A.A.; Hassan, A.A.A.; Ismail, M.K.; AbdelAleem, B.H.: Evaluating the cracking behavior of ECC beam-column connections under cyclic loading by acoustic emission analysis. Constr. Build. Mater. 215, 958–968 (2019)

    Article  Google Scholar 

  168. Liu, Y.; Zhang, Q.; Bao, Y.; Bu, Y.: Static and fatigue push-out tests of short headed shear studs embedded in engineered cementitious composites (ECC). Eng. Struct. 182, 29–38 (2019)

    Article  Google Scholar 

  169. Hossain, K.M.A.; Attarde, S.; Anwar, M.S.: Finite element modelling of profiled steel deck composite slab system with engineered cementitious composite under monotonic loading. Eng. Struct. 186, 13–25 (2019)

    Article  Google Scholar 

  170. Zhang, Z.; Hu, J.; Ma, H.: Feasibility study of ECC with self-healing capacity applied on the long-span steel bridge deck overlay. Int. J. Pavement Eng. 8436, 1–10 (2017)

    Google Scholar 

  171. Li, M.: Engineered cementitious composites for bridge decks. Advanced Composites in Bridge Construction and Repair, pp. 177–209. Elsevier, New York (2014)

    Chapter  Google Scholar 

  172. Zhao, Y.; Jiang, J.; Ni, F.; Zhou, L.: Fatigue cracking resistance of Engineered cementitious composites (ECC) under working condition of orthotropic steel bridge decks pavement. Appl. Sci. 9(17), 3577 (2019)

    Article  Google Scholar 

  173. Li, F.; Feng, Z.; Deng, K.; Yu, Y.; Hu, Z.; Jin, H.: Axial behavior of reinforced PP-ECC column and hybrid NSC-ECC column under compression. Eng. Struct. 195, 223–230 (2019)

    Article  Google Scholar 

  174. Al-Gemeel, A.N.; Zhuge, Y.: Using textile reinforced engineered cementitious composite for concrete columns confinement. Compos. Struct. 210, 695–706 (2019)

    Article  Google Scholar 

  175. Li, L.Z.; Bai, Y.; Yu, K.Q.; Yu, J.T.; Lu, Z.D.: Reinforced high-strength engineered cementitious composite (ECC) columns under eccentric compression: experiment and theoretical model. Eng. Struct. 198, 109541 (2019)

    Article  Google Scholar 

  176. Yuan, F.; Chen, M.: Effect of matrix ductility on the compression behavior of steel-reinforced engineered cementitious composite columns. Adv. Struct. Eng. 22(10), 2250–2263 (2019)

    Article  Google Scholar 

  177. Li, V.C.; et al.: On the emergence of 3D printable engineered, strain hardening cementitious composites (ECC/SHCC). Cem. Concr. Res. 132, 106038 (2020). https://doi.org/10.1016/j.cemconres.2020.106038

    Article  Google Scholar 

  178. Zhu, B.; Pan, J.; Nematollahi, B.; Zhou, Z.; Zhang, Y.; Sanjayan, J.: Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Mater. Des. 181, 108088 (2019)

    Article  Google Scholar 

  179. Bao, Y. et al.: Three-dimensional printing multifunctional engineered cementitious composites (ECC) for structural elements. In: RILEM International Conference on Concrete and Digital Fabrication, Springer, New York, pp. 115–128 (2019)

  180. Zhou, Y.; Fu, H.; Li, P.; Zhao, D.; Sui, L.; Li, L.: Bond behavior between steel bar and engineered cementitious composite (ECC) considering lateral FRP confinement: test and modeling. Compos. Struct. 226, 111206 (2019)

    Article  Google Scholar 

  181. Mohammedameen, A.; Abdulkadir, C.: Performance of FRP confined and unconfined engineered cementitious composite exposed to seawater. J. Compos. Mater. (2019). https://doi.org/10.1177/0021998319857110

    Article  Google Scholar 

  182. Ge, W.; et al.: Experimental study on flexural behavior of ECC-concrete composite beams reinforced with FRP bars. Compos. Struct. 208, 454–465 (2019)

    Article  Google Scholar 

  183. Yuan, F.; Chen, M.; Pan, J.: Experimental study on seismic behaviours of hybrid FRP–steel-reinforced ECC–concrete composite columns. Compos. Part B Eng. 176, 107272 (2019)

    Article  Google Scholar 

  184. Ge, W.J.; et al.: Flexural behavior of ECC-concrete hybrid composite beams reinforced with FRP and steel bars. J. Compos. Constr. 23(1), 1–20 (2019)

    Article  MathSciNet  Google Scholar 

  185. Pan, Y.; Wu, C.; Cheng, X.; Li, V.C.; He, L.: Impact fatigue behaviour of GFRP mesh reinforced engineered cementitious composites for runway pavement. Constr. Build. Mater. 230, 116898 (2020)

    Article  Google Scholar 

  186. Bawono, A.A.; Lechner, B.; Yang, E.H.: Skid resistance and surface water drainage performance of engineered cementitious composites for pavement applications. Cem. Concr. Compos. 104, 103387 (2019)

    Article  Google Scholar 

  187. Alam, B.; Yaman, İ.Ö.; Alam, B.: Fatigue performance of PVA fibre reinforced cementitious composite overlays. Int. J. Pavement Eng. 8436, 1–7 (2019)

    Article  Google Scholar 

  188. Yang, G.; Yu, J.; Luo, Y.: Development and mechanical performance of fire-resistive engineered cementitious composites. J. Mater. Civ. Eng. 31(5), 1–10 (2019)

    Article  Google Scholar 

  189. Li, B.; Xiong, H.; Jiang, J.; Dou, X.: Tensile behavior of basalt textile grid reinforced Engineering Cementitious Composite. Compos. Part B Eng. 156, 185–200 (2019)

    Article  Google Scholar 

  190. Jiang, J.; Jiang, C.; Li, B.; Feng, P.: Bond behavior of basalt textile meshes in ultra-high ductility cementitious composites. Compos. Part B 174, 107022 (2019)

    Article  Google Scholar 

  191. Al-Gemeel, A.N.; Zhuge, Y.; Youssf, O.: Experimental investigation of basalt textile reinforced engineered cementitious composite under apparent hoop tensile loading. J. Build. Eng. 23, 270–279 (2019)

    Article  Google Scholar 

  192. Sridhar, R.; Prasad, D.R.: Damage assessment of functionally graded reinforced concrete beams using hybrid fiber engineered cementitious composites. Structures 20, 832–847 (2019)

    Article  Google Scholar 

  193. Nehdi, M.L.; Ali, M.A.E.M.: Experimental and numerical study of engineered cementitious composite with strain recovery under impact loading. Appl. Sci. 9(5), 994 (2019)

    Article  Google Scholar 

  194. Pourfalah, S.; Cotsovos, D.M.: Enhancing the out-of-plane behaviour of unreinforced masonry walls under impact loading through the use of partially bonded layers of engineered cementitious composite. Int. J. Prot. Struct. 11(2), 209–234 (2019)

    Article  Google Scholar 

  195. Chen, Z.; Yang, Y.; Yao, Y.: Impact properties of engineered cementitious composites with high volume fly ash using SHPB test. J. Wuhan Univ. Technol. Mater. Sci. Ed. 27(3), 590–596 (2012)

    Article  Google Scholar 

  196. Ding, Z.; Fu, J.; Li, X.; Ji, X.: Mechanical behavior and its influencing factors on engineered cementitious composite linings. Adv. Mater. Sci. Eng. (2019). https://doi.org/10.1155/2019/3979741

  197. Li, Y.; Zhu, J.; Wang, Z.: Investigation on mechanical properties of masonry infill wall strengthened with ECC. KSCE J. Civ. Eng. 23(1), 295–306 (2018)

    Article  Google Scholar 

  198. Pourfalah, S.; Cotsovos, D.M.; Suryanto, B.; Moatamedi, M.: Out-of-plane behaviour of masonry specimens strengthened with ECC under impact loading. Eng. Struct. 173, 1002–1018 (2018)

    Article  Google Scholar 

  199. Struct, J.C.; Mohammed, B.S.; Aswin, M.; Liew, M.S.; Amila, N.; Abdullah, W.: Structural performance of RC and R-ECC dapped-end beams based on the role of hanger or diagonal reinforcements combined by ECC. Int. J. Concr. Struct. Mater. 13, 44 (2019)

    Article  Google Scholar 

  200. Hossain, K.M.A.; Chu, K.: Confinement of six different concretes in CFST columns having different shapes and slenderness. Int. J. Adv. Struct. Eng. 11(2), 255–270 (2019)

    Article  Google Scholar 

  201. Cai, J.; Pan, J.; Li, X.: Behavior of ECC-encased CFST columns under axial compression. Eng. Struct. 171(May), 1–9 (2018)

    Article  Google Scholar 

  202. Yu, J.; et al.: Dynamic response of concrete frames including plain ductile cementitious composites. J. Struct. Eng. 145(6), 04019042 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by Civil & Environmental Engineering Department and the Center for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Maslehuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahraq, A.A., Maslehuddin, M. & Al-Dulaijan, S.U. Macro- and Micro-Properties of Engineered Cementitious Composites (ECCs) Incorporating Industrial Waste Materials: A Review. Arab J Sci Eng 45, 7869–7895 (2020). https://doi.org/10.1007/s13369-020-04729-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04729-7

Keywords

Navigation