Skip to main content
Log in

Numerical Simulation of Particle Size Influence on the Breakage Mechanism of Broken Coal

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The goaf is generally consisted of broken coal and rock mass. During the process of overburden strata subsidence and compaction, the broken characteristics directly affect the mechanism and pore characteristics of the caving coal and rock mass. In order to study the influence of particle size on the breakage mechanism of broken coal in the compaction process, the bonded particle model of broken coal sample was carried out to study the breakage characteristics during the compaction with different particle sizes. The stress–strain model of the broken particle model (BPM) during compaction was given. The particle size affects the maximum vertical strain, εm, and the stress–strain curve at the beginning of loading. But the particle size has no effect on the slope of the stress–strain curve in linear stage. During the compaction process, the porosity of the BPM can be divided into three stages: slow decrease stage, accelerated decrease stage and slow decrease stage with the increase in strain. Particle size also affects the change in porosity during compaction. The larger the particle size is, the smaller the porosity is at the same strain, but the particle size has no effect on the porosity–stress curve. The breakage rate of BPM increases in S-shape with the increase in strain. When the strain of BPM is over the maximum vertical strain, the particle is basically no longer broken. The larger the particle size is, the larger the residual particle cluster size will be when the breakage rate is stable. The particle sizes' influence on the evolution characteristics of BPM mechanical properties, porosity and breakage rate was demonstrated. The numerical simulation results in this paper can be used for analyzing the compaction characteristics of caving zone at the engineering scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Palchik, V.: Formation of fractured zones in overburden due to longwall mining. Environ. Geol. 44(1), 28–38 (2003)

    Google Scholar 

  2. Zhang, C.; Tu, S.; Zhao, Y.: Compaction characteristics of the caving zone in a longwall goaf: a review. Environ. Earth Sci. 78(1), 27 (2019)

    Google Scholar 

  3. Zhang, C.; Zhang, L.: Permeability characteristics of broken coal and rock under cyclic loading and unloading. Nat. Resour. Res. 28(3), 1055–1069 (2019)

    MathSciNet  Google Scholar 

  4. Zhang, C.; Tu, S.; Zhang, L.: Analysis of broken coal permeability evolution under cyclic loading and unloading conditions by the model based on the hertz contact deformation principle. Transp. Porous Media 119(3), 739–754 (2017)

    MathSciNet  Google Scholar 

  5. Hu, S.; Han, D.; Feng, G.; Zhang, A.; Hao, G.; Hu, L.; Li, B.: Influence of stress on void ratios of compacted crushed rock masses in coal mine gobs. Nat. Resour. Res. 29(2), 1361–1373 (2020)

    Google Scholar 

  6. Liang, B.; Wang, B.; Jiang, L.; Li, G.; Li, C.: Broken expand properties of caving rock in shallow buried goaf. J. China Univ. Min. Technol. 45(3), 475–482 (2016)

    Google Scholar 

  7. Zhang, C.; Tu, S.; Zhang, L.; Bai, Q.; Yuan, Y.; Wang, F.: A methodology for determining the evolution law of gob permeability and its distributions in longwall coal mines. J. Geophys. Eng. 13(2), 181–193 (2016)

    Google Scholar 

  8. Cao, Z.; Chen, J.; Cai, Y.; Zhao, L.; Gu, C.; Wang, J.: Long-term behavior of clay-fouled unbound granular materials subjected to cyclic loadings with different frequencies. Eng. Geol. 243, 118–127 (2018)

    Google Scholar 

  9. Nguyen, C.D.; Benahmed, N.; Andò, E.; Sibille, L.; Philippe, P.: Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography. Acta Geotech. 14(3), 749–765 (2019)

    Google Scholar 

  10. Wang, Y.; Li, C.H.; Hu, Y.Z.: 3D image visualization of meso-structural changes in a bimsoil under uniaxial compression using X-ray computed tomography (CT). Eng. Geol. 248, 61–69 (2019)

    Google Scholar 

  11. Yu, B.; Chen, Z.; Dai, Y.; Xu, M.; Wei, J.: Particle size distribution and energy dissipation of saturated crushed sandstone under compaction. J. Min. Saf. Eng. 35(1), 197–204 (2018)

    Google Scholar 

  12. Hu, S.; Zhang, A..; Feng, G.; Guo, X.; Miu, X.; Li, C.; Kang, L.: Methane extraction from abandoned mines by surface vertical wells: a case study in China. Geofluids (2018). https://doi.org/10.1155/2018/8043157

    Article  Google Scholar 

  13. Zizheng, Zhang; Min, Deng; Bai Jianbiao, Yu; Qiuhong, Xianyang, Wu; Lishuai, Jiang: Strain energy evolution and conversion under triaxial unloading confining pressure tests due to gob-side entry retained. Int. J. Rock Mech. Min. Sci. 126, 104184 (2020). https://doi.org/10.1016/j.ijrmms.2019.104184

    Article  Google Scholar 

  14. Cheng, Y.P.; Nakata, Y.; Bolton, M.D.: Discrete element simulation of crushable soil. Geotechnique 53(7), 633–641 (2003)

    Google Scholar 

  15. Bolton, M.D.; Nakata, Y.; Cheng, Y.P.: Micro-and macro-mechanical behaviour of DEM crushable materials. Géotechnique 58(6), 471–480 (2008)

    Google Scholar 

  16. Manso, J.; Marcelino, J.; Caldeira, L.: Crushing and oedometer compression of rockfill using DEM. Comput. Geotech. 101, 11–22 (2018)

    Google Scholar 

  17. Jiang, H.; Xu, M.: Study of stress-path-dependent behavior of rockfills using discrete element method. Eng. Mech. 31(10), 151–157 (2014)

    Google Scholar 

  18. Xu, K.; Zhou, W.; Ma, G.; Chang, X.; Yang, L.: Review of particle breakage simulation based on DEM. Chin. J. Geotech. Eng. 40(5), 880–889 (2018)

    Google Scholar 

  19. Liu, Y.; Zheng, D.; Yang, B.; Zhu, B.; Sun, M.: Microscopic simulation of influence of particle size and gradation on permeability coefficient of soil. Rock Soil Mech. 40(1), 403–412 (2019)

    Google Scholar 

  20. Zhang, J.; Wang, H.; Chen, S.; Li, Y.: Bearing deformation characteristics of large-size broken rock. J. China Coal Soc. 43(04), 1000–1007 (2019)

    Google Scholar 

  21. Li, M.; Zhang, J.; Zhou, N.; Huang, Y.: Effect of particle size on the energy evolution of crushed waste rock in coal mines. Rock Mech. Rock Eng. 50(5), 1347–1354 (2017)

    Google Scholar 

  22. Wang, C.; Lu, Y.; Hao, G.; Cui, B.; Zhao, Z.: Simulated test on compression deformation characteristics and mechanism of fractured rock in mined out area. Geotech. Geol. Eng. 36(5), 2809–2821 (2018)

    Google Scholar 

  23. Zhang, T.; Chen, J.; Bao, R.; Jiang, X.; Zhou, A.; Ge, D.: Fractal characteristics of particle size distribution of broken coal samples with different immersion time. J. Min. Saf. Eng. 35(3), 154–160 (2018)

    Google Scholar 

  24. Cil, M.B.; Buscarnera, G.: Dem assessment of scaling laws capturing the grain size dependence of yielding in granular soils. Granul. Matter 18(3), 36 (2016)

    Google Scholar 

  25. Su, C.; Gu, M.; Tang, X.; Guo, W.: Experiment study of compaction characteristics of crushed stones from coal seam roof. Chin. J. Rock Mech. Eng. 31(1), 2011–2012 (2012)

    Google Scholar 

  26. Xue, S.; Zhang, P.; Bao, J.; He, L.; Hu, Y.; Yang, S.: Comparison of mercury intrusion porosimetry and multi-scale X-ray CT on characterizing the microstructure of heat-treated cement mortar. Mater. Charact. 160, 110085 (2020)

    Google Scholar 

  27. Potyondy, D.O.; Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

    Google Scholar 

  28. Cho, N.; Martin, C.D.; Sego, D.C.: A clumped particle model for rock. Int. J. Rock Mech. Min. Sci. 44(7), 997–1010 (2007)

    Google Scholar 

  29. Gao, F.Q.; Stead, D.: The application of a modified voronoi logic to brittle fracture modelling at the laboratory and field scale. Int. J. Rock Mech. Min. Sci. 68(68), 1–14 (2014)

    Google Scholar 

  30. Kazerani, T.; Zhao, J.: Micromechanical parameters in bonded particle method for modelling of brittle material failure. Int. J. Numer. Anal. Methods Geomech. 34(18), 1877–1895 (2010)

    MATH  Google Scholar 

  31. Yavuz, H.: An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines. Int. J. Rock Mech. Min. Sci. 41(2), 193–205 (2004)

    Google Scholar 

  32. Nakata, Y.; Hyodo, M.; Hyde, A.F.; Kato, Y.; Murata, H.: Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found. 41(1), 69–82 (2001)

    Google Scholar 

  33. De Freitas, M.H.; Butenuth, C.; Khodaii, A.: Discussion: on the micromechanics of crushable aggregates. Géotechnique 50(3), 315–318 (2000)

    Google Scholar 

  34. Xiao, Y.; Liu, H.; Chen, Q.; Ma, Q.; Xiang, Y.; Zheng, Y.: Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotech. 12(5), 1177–1184 (2017)

    Google Scholar 

  35. Einav, I.: Breakage mechanics—part I: theory. J. Mech. Phys. Solids 55(6), 1274–1297 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Suescun-Florez, E.; Iskander, M.; Bless, S.: Evolution of particle damage of sand during axial compression via arrested tests. Acta Geotech. 15(1), 95–112 (2020)

    Google Scholar 

  37. Itasca: PFC 5.0 (Particle Flow Code) documentation (2014)

  38. Virgin, B.; Haslund, E.; Hilfer, R.: Rescaling relations between two-and three-dimensional local porosity distributions for natural and artificial porous media. Physica A 232(1–2), 1–20 (1996)

    Google Scholar 

  39. He, Y.; Zhu, S.; Wu, L.: Research on the corresponding relationship between two-dimensional porosity and three-dimensional porosity of coarse materials. Water Power 40(5), 27–29 (2014)

    Google Scholar 

  40. Li, Y.; She, C.: Numerical simulation of effect of size on crushing strength of rockfill grains using particle flow code. Rock Soil Mech. 39(8), 2951–2959 (2018)

    Google Scholar 

  41. Zhou, H.; Ma, G.; Yuan, W.; Zhou, W.; Chang, X.: Size effect on the crushing strengths of rock particles. Rock Soil Mech. 38(8), 2425–2433 (2017)

    Google Scholar 

  42. Zhu, D.; Tu, S.; Ma, H.; Wei, H.; Li, H.; Wang, C.: Modeling and calculating for the compaction characteristics of waste rock masses. Int. J. Numer. Anal. Methods Geomech. 43(1), 257–271 (2019)

    Google Scholar 

  43. Ye, J.; Zhang, J.; Zou, W.: Influences of grain shape on pore characteristics of filled breakstone aggregate. Rock Soil Mech. 39(12), 169–179 (2018)

    Google Scholar 

  44. Zhou, D.; Tian, J.; Liu, J.; Zhou, C.; Ning, F.: Three-dimensional shape of rockfill material and its influence on particle breakage. Rock Soil Mech. 39(10), 27–32 (2018)

    Google Scholar 

  45. Zhang, C.; Liu, J.; Zhao, Y.; Han, P.; Zhang, L.: Numerical simulation of broken coal strength influence on compaction characteristics in goaf. Nat. Resour. Res. (2020). https://doi.org/10.1007/s11053-019-09613-2

    Article  Google Scholar 

  46. Xu, Z.; Wang, G.; Li, M.; He, M.; Zhang, J.; Zhou, C.; Han, H.: Numerical simulation of longwall top-coal caving with extra-thick and hard coal seam based on bonded particle model. J. China Coal Soc. 44(11), 3317–3328 (2019)

    Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Key R&D Program of China (2018YFC0604701), the National Natural Science Foundation of China (U1910206, 51874312, 51874281), the Open Fund of State Key Laboratory of Coal Resources and Safe Mining (SKLCRSM19KFA17), the Key Laboratory of Safety and High-efficiency Coal Mining (JYBSYS2019203), the State Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan Polytechnic University) (WS2019A05), the Fundamental Research Funds for the Central Universities (2020YQNY04) and the Yue Qi Distinguished Scholar Project, China University of Mining & Technology, Beijing (2017JCB02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cun Zhang or Tong Zhang.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Ren, Z., Hao, D. et al. Numerical Simulation of Particle Size Influence on the Breakage Mechanism of Broken Coal. Arab J Sci Eng 45, 9171–9185 (2020). https://doi.org/10.1007/s13369-020-04693-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04693-2

Keywords

Navigation